Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine

被引:241
|
作者
Liu, Luo [1 ]
Xiao, Xiangming [2 ]
Qin, Yuanwei [2 ]
Wang, Jie [2 ]
Xu, Xinliang [3 ]
Hu, Yueming [1 ]
Qiao, Zhi [4 ]
机构
[1] South China Agr Univ, Guangdong Prov Key Lab Land Use & Consolidat, Guangzhou 510642, Peoples R China
[2] Univ Oklahoma, Dept Microbiol & Plant Biol, 101 David L Boren Blvd, Norman, OK 73019 USA
[3] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[4] Tianjin Univ, Sch Environm Sci & Engn, Key Lab Indoor Air Environm Qual Control, Tianjin 300350, Peoples R China
基金
美国国家卫生研究院; 中国国家自然科学基金;
关键词
Cropping intensity; GEE; Phenology; Sentinel-2; Vegetation indices; PADDY RICE AGRICULTURE; FOOD-PRODUCTION; CROPLAND; PHENOLOGY; AREA; MODEL; CLASSIFICATION; PATTERNS; CLOUD; ALGORITHM;
D O I
10.1016/j.rse.2019.111624
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cropping intensity has undergone dramatic changes worldwide due to the effects of climate changes and human management activities. Cropping intensity is an important factor contributing to crop production and food security at local, regional and national scales, and is a critical input data variable for many global climate, land surface, and crop models. To generate annual cropping intensity maps at large scales, Moderate Resolution Imaging Spectroradiometer (MODIS) images at 500-m or 250-m spatial resolution have problems with mixed land cover types within a pixel (mixed pixel), and Landsat images at 30-m spatial resolution suffer from low temporal resolution (16-day). To overcome these limitations, we developed a straightforward and efficient pixel- and phenology-based algorithm to generate annual cropping intensity maps over large spatial domains at high spatial resolution by integrating Landsat-8 and Sentinel-2 time series image data for 2016-2018 using the Google Earth Engine (GEE) platform. In this pilot study, we report annual cropping intensity maps for 2017 at 30-m spatial resolution over seven study areas selected according to agro-climatic zones in China. Based on field-scale sample data, the annual cropping intensity maps for the study areas had overall accuracy rates of 89-99%, with Kappa coefficients of 0.76-0.91. The overall accuracy of the annual cropping intensity maps was 93%, with a Kappa coefficient of 0.84. These cropping intensity maps can also be used to enable identification of various crop types from phenological information extracted from the growth cycle of each crop. These algorithms can be readily applied to other regions in China to generate annual cropping intensity maps and quantify inter-annual cropping intensity variations at the national scale with a greatly improved accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Mapping cropping intensity in Huaihe basin using phenology algorithm, all Sentinel-2 and Landsat images in Google Earth Engine
    Pan, Li
    Xia, Haoming
    Yang, Jia
    Niu, Wenhui
    Wang, Ruimeng
    Song, Hongquan
    Guo, Yan
    Qin, Yaochen
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 102
  • [2] Mapping Winter Crops Using a Phenology Algorithm, Time-Series Sentinel-2 and Landsat-7/8 Images, and Google Earth Engine
    Pan, Li
    Xia, Haoming
    Zhao, Xiaoyang
    Guo, Yan
    Qin, Yaochen
    REMOTE SENSING, 2021, 13 (13)
  • [3] Development of a New Phenology Algorithm for Fine Mapping of Cropping Intensity in Complex Planting Areas Using Sentinel-2 and Google Earth Engine
    Guo, Yan
    Xia, Haoming
    Pan, Li
    Zhao, Xiaoyang
    Li, Rumeng
    Bian, Xiqing
    Wang, Ruimeng
    Yu, Chong
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (09)
  • [4] Mapping sugarcane plantation dynamics in Guangxi, China, by time series Sentinel-1, Sentinel-2 and Landsat images
    Wang, Jie
    Xiao, Xiangming
    Liu, Luo
    Wu, Xiaocui
    Qin, Yuanwei
    Steiner, Jean L.
    Dong, Jinwei
    REMOTE SENSING OF ENVIRONMENT, 2020, 247
  • [5] Mapping Tidal Flats of the Bohai and Yellow Seas Using Time Series Sentinel-2 Images and Google Earth Engine
    Chang, Maoxiang
    Li, Peng
    Li, Zhenhong
    Wang, Houjie
    REMOTE SENSING, 2022, 14 (08)
  • [6] Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine
    Jia, Mingming
    Wang, Zongming
    Mao, Dehua
    Ren, Chunying
    Wang, Chao
    Wang, Yeqiao
    REMOTE SENSING OF ENVIRONMENT, 2021, 255
  • [7] SHORELINE EXTRACTION USING TIME SERIES OF SENTINEL-2 SATELLITE IMAGES BY GOOGLE EARTH ENGINE PLATFORM
    Rostami, E.
    Sharifi, M. A.
    Hasanlou, M.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 653 - 659
  • [8] Cropping intensity map of China with 10 m spatial resolution from analyses of time-series Landsat-7/8 and Sentinel-2 images
    Liu, Luo
    Kang, Shanggui
    Xiong, Xiliu
    Qin, Yuanwei
    Wang, Jie
    Liu, Zhenjie
    Xiao, Xiangming
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [9] Random Forest for rice yield mapping and prediction using Sentinel-2 data with Google Earth Engine
    Choudhary, K.
    Shi, W.
    Dong, Y.
    Paringer, R.
    ADVANCES IN SPACE RESEARCH, 2022, 70 (08) : 2443 - 2457
  • [10] Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine
    Roteta, Ekhi
    Bastarrika, Aitor
    Franquesa, Magi
    Chuvieco, Emilio
    REMOTE SENSING, 2021, 13 (04) : 1 - 30