Almost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence

被引:0
作者
Zang, Qing-pei [1 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
关键词
Central Limit Theorem; Indicator Function; Covariance Matrice; Moment Condition; Standard Normal Distribution;
D O I
10.1155/2010/130915
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {X-n; n >= 1} be a standardized non- stationary Gaussian sequence, and let denote S-n = Sigma(n)(k=1) X-k, sigma(n) = root Var(S-n). Under some additional condition, let the constants {u(ni); 1 <= i <= n, n >= 1} satisfy Sigma(n)(i=1)(1 - Phi(u(ni))) -> tau as n -> infinity for some tau >= 0 and min(1 <= i <= n) u(ni) >= c(log n)(1/2), for some c > 0, then, we have lim(n ->infinity) (1/log n) Sigma(n)(k=1) (1/k)I{boolean AND(k)(i=1) (X-i <= u(ki)), S-k/sigma(k) <= x} = e(-tau)Phi(x) almost surely for any x is an element of R, where I (A) is the indicator function of the event A and Phi(x) stands for the standard normal distribution function.
引用
收藏
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2
[2]   AN ALMOST EVERYWHERE CENTRAL LIMIT-THEOREM [J].
BROSAMLER, GA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :561-574
[3]   Almost sure max-limits for nonstationary Gaussian sequence [J].
Chen, SQ ;
Lin, ZY .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1175-1184
[4]   Almost sure convergence in extreme value theory [J].
Cheng, SH ;
Peng, L ;
Qi, YC .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :43-50
[5]   Almost sure limit theorems for the maximum of stationary Gaussian sequences [J].
Csáki, E ;
Gonchigdanzan, K .
STATISTICS & PROBABILITY LETTERS, 2002, 58 (02) :195-203
[6]  
Dudzinski M., 2003, PROBABILITY MATH STA, V23, P139
[7]   On almost sure max-limit theorems [J].
Fahrner, I ;
Stadtmuller, U .
STATISTICS & PROBABILITY LETTERS, 1998, 37 (03) :229-236
[8]   A normal comparison inequality and its applications [J].
Li, WBV ;
Shao, QM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) :494-508
[9]   ON STRONG VERSIONS OF THE CENTRAL LIMIT-THEOREM [J].
SCHATTE, P .
MATHEMATISCHE NACHRICHTEN, 1988, 137 :249-256
[10]   The almost sure central limit theorems in the joint version for the maxima and sums of certain stationary Gaussian sequences [J].
Ski, Marcin Dudzi .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (04) :347-357