A Riemann-Hilbert problem for biorthogonal polynomials

被引:37
|
作者
Kuijlaars, ABJ
McLaughlin, KTR
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
基金
美国国家科学基金会;
关键词
biorthogonal polynomials; Riemann-Hilbert problem; multiple orthogonality;
D O I
10.1016/j.cam.2004.01.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the biorthogonal polynomials that appear in the theory of coupled random matrices via a Riemann-Hilbert problem. Our Riemann-Hilbert problem is different from the ones that were proposed recently by Ercolani and McLaughlin, Kapaev, and Bertola et al. We believe that our formulation may be tractable to asymptotic analysis. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 50 条
  • [21] Riemann-Hilbert problems for multiple orthogonal polynomials
    Van Assche, W
    Geronimo, JS
    Kuijlaars, ABJ
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 23 - 59
  • [22] Riemann-Hilbert problem and algebraic curves
    Enolskii, V.
    Grava, T.
    BILINEAR INTEGRABLE SYSTEMS: FROM CLASSICAL TO QUATUM, CONTINUOUS TO DISCRETE, 2006, 201 : 65 - +
  • [23] THE RIEMANN-HILBERT PROBLEM FOR NONSYMMETRIC SYSTEMS
    GREENBERG, W
    ZWEIFEL, PF
    PAVERIFONTANA, S
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) : 3540 - 3545
  • [24] On the Riemann-Hilbert problem in dimension 4
    Gladyshev A.I.
    Gladyshev, A.I., 2000, Kluwer Academic/Plenum Publ Corp, New York, NY, United States (06) : 219 - 264
  • [25] THE RIEMANN-HILBERT PROBLEM AND INVERSE SCATTERING
    ZHOU, X
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (04) : 966 - 986
  • [26] On the modification of the method of the Riemann-Hilbert problem
    Khoroshun, VV
    1998 INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ELECTROMAGNETIC THEORY, VOLS 1 AND 2, 1998, : 772 - 774
  • [27] THE RIEMANN-HILBERT PROBLEM IN THE IRREGULAR CASE
    Guillermou, Stephane
    ASTERISQUE, 2019, (407) : 267 - 296
  • [28] Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model
    Bleher, P
    Its, A
    ANNALS OF MATHEMATICS, 1999, 150 (01) : 185 - 266
  • [29] The Riemann-Hilbert problem and special functions
    Novokshenov, V. Yu.
    GEOMETRIC METHODS IN PHYSICS, 2008, 1079 : 149 - 161
  • [30] RIEMANN-HILBERT PROBLEM FOR THE HOLOMORPHOUS VECTOR
    BOIARSKII, BV
    DOKLADY AKADEMII NAUK SSSR, 1959, 126 (04): : 695 - 698