Fixed-parameter tractable algorithms for testing upward planarity

被引:0
作者
Healy, P [1 ]
Lynch, K [1 ]
机构
[1] Univ Limerick, CSIS Dept, Limerick, Ireland
来源
SOFSEM 2005:THEORY AND PRACTICE OF COMPUTER SCIENCE | 2005年 / 3381卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of testing a digraph G = (V, E) for upward planarity. In particular we present two fixed-parameter tractable algorithms for testing the upward planarity of G. Let n = broken vertical bar V broken vertical bar, let t be the number of triconnected components of G, and let c be the number of cut-vertices of G. The first upward planarity testing algorithm we present runs in O(2(t) (.) t! (.) n 2)-time. The previously known best result is an O(t! (.) 8(t) (.) n(3) + 2(3.2c) (.) t(3.2c) (.) t! (.) 8(t) (.) n)-time algorithm by Chan. We use the kernelisation technique to develop a second upward planarity testing algorithm which runs in O(n(2) + k(4) (2k + 1)!) time, where k = broken vertical bar E broken vertical bar - broken vertical bar V broken vertical bar. We also define a class of non upward planar digraphs.
引用
收藏
页码:199 / 208
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1999, GRAPH DRAWING ALGORI
[2]  
BATTISTA GD, 1996, SIAM J COMPUT, V25, P956
[3]  
BATTISTA GD, 1998, LECT NOTES COMPUTER, V1547, P72
[4]   UPWARD DRAWINGS OF TRICONNECTED DIGRAPHS [J].
BERTOLAZZI, P ;
DIBATTISTA, G ;
LIOTTA, G ;
MANNINO, C .
ALGORITHMICA, 1994, 12 (06) :476-497
[5]   Optimal upward planarity testing of single-source digraphs [J].
Bertolazzi, P ;
Di Battista, G ;
Mannino, C ;
Tamassia, R .
SIAM JOURNAL ON COMPUTING, 1998, 27 (01) :132-169
[6]  
CHAN H, 2004, IN PRESS ESA
[7]   ALGORITHMS FOR PLANE REPRESENTATIONS OF ACYCLIC DIGRAPHS [J].
DIBATTISTA, G ;
TAMASSIA, R .
THEORETICAL COMPUTER SCIENCE, 1988, 61 (2-3) :175-198
[8]  
DOWNEY RG, 1997, MONOGRAPHS COMPUTER
[9]  
Dujmovic V, 2004, LECT NOTES COMPUT SC, V2912, P332
[10]  
DUJMOVIC V, 2001, P 9 INT S GRAPH DRAW, V2265, P1