On the existence of solutions for nonhomogeneous Schrodinger-Poisson system

被引:73
作者
Wang, Lixia [1 ]
Ma, Shiwang [2 ,3 ]
Wang, Xiaoming [4 ]
机构
[1] Tianjin Chengjian Univ, Sch Sci, Tianjin 300384, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Shangrao Normal Univ, Sch Math & Comp Sci, Shangrao 334001, Jiangxi, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2016年
关键词
Schrodinger-Poisson systems; sublinear nonlinearities; concave and convex nonlinearities; variational methods; GROUND-STATE SOLUTIONS; KLEIN-GORDON-MAXWELL; POSITIVE SOLUTIONS; SOLITARY WAVES; MULTIPLE SOLUTIONS; THOMAS-FERMI; EQUATION; CONCAVE; ATOMS;
D O I
10.1186/s13661-016-0584-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the following nonhomogeneous Schrodinger-Poisson systems: (*) {-Delta u + V(x) u + K(x)phi(x) u = f (x, u) + g(x), x is an element of R-3, -Delta phi = K(x) u(2), lim(vertical bar x vertical bar ->+infinity)phi(x) = 0, x is an element of R-3, where f (x, u) is either sublinear in u as vertical bar u vertical bar ->infinity or a combination of concave and convex terms. Under some suitable assumptions, the existence of solutions is proved by using critical point theory.
引用
收藏
页数:11
相关论文
共 45 条