Tame algebras and Tits quadratic forms

被引:29
作者
Bruestle, Thomas [2 ,3 ]
Antonio de la Pena, Jose [4 ]
Skowronski, Andrzej [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
[2] Univ Sherbrooke, Dept Math & Informat, Sherbrooke, PQ J1K 2R1, Canada
[3] Bishops Univ, Div Nat Sci & Math, Lennoxville, PQ J1M 1Z7, Canada
[4] Univ Nacl Autonoma Mexico, Inst Math, Mexico City 04510, DF, Mexico
基金
加拿大自然科学与工程研究理事会;
关键词
Tame algebras; Tits forms; Simply connected algebras; Degenerations of algebras; SIMPLY CONNECTED ALGEBRAS; REPRESENTATION-FINITE ALGEBRAS; WILD ALGEBRAS; POLYNOMIAL-GROWTH; BISERIAL ALGEBRAS; MODULES;
D O I
10.1016/j.aim.2010.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We solve a long standing problem concerning the connection between the tameness of simply connected algebras and the weak nonnegativity of the associated Tits integral quadratic forms, and derive some consequences. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:887 / 951
页数:65
相关论文
共 77 条
[1]  
[Anonymous], 1995, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], C MATH
[3]  
ASSEM I, 1988, P LOND MATH SOC, V56, P417
[4]  
Assem I., 2006, Elements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, V1
[5]  
Assem I., 1993, CMS C P, V14, P29
[6]  
Assem I., 1995, TSUKUBA J MATH, V19, P453
[7]   REPRESENTATION-FINITE ALGEBRAS AND MULTIPLICATIVE BASES [J].
BAUTISTA, R ;
GABRIEL, P ;
ROITER, AV ;
SALMERON, L .
INVENTIONES MATHEMATICAE, 1985, 81 (02) :217-285
[8]  
BAUTISTA R, 1983, J LOND MATH SOC, V27, P212
[9]   A CRITERION FOR FINITE REPRESENTATION TYPE [J].
BONGARTZ, K .
MATHEMATISCHE ANNALEN, 1984, 269 (01) :1-12
[10]  
BONGARTZ K, 1983, J LOND MATH SOC, V28, P461