Normal Bundles of Surfaces in Riemannian Manifolds

被引:0
|
作者
Sun, Lei [1 ]
Hou, Zhong-Hua [1 ]
机构
[1] Dalian Univ Technol, Inst Math, Dalian 116024, Liaoning, Peoples R China
关键词
GEOMETRY;
D O I
10.1007/s00009-014-0390-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f : S -> M (n) be an immersed surface in a Riemannian manifold M. Let NS be the normal bundle of S in M and TM be the tangent bundle of M. Let F : (NS, g (a,b) ) -> (TM, G (a,b) ) be the natural isometric immersion induced by f with g (a,b) = F (*) G (a,b) , where G (a,b) is the Cheeger-Gromoll type metric on TM. In this paper, we study the extrinsic geometric properties of NS in (TM, G (a,b) ) in terms of properties of the immersion f. In particular, the conditions of minimality and constant mean curvature are studied.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
  • [1] Normal Bundles of Surfaces in Riemannian Manifolds
    Lei Sun
    Zhong-Hua Hou
    Mediterranean Journal of Mathematics, 2015, 12 : 173 - 185
  • [2] FLAT RIEMANNIAN MANIFOLDS AS TORUS BUNDLES
    Filar, Tomasz
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2380 - 2387
  • [3] ON NATURAL METRICS ON TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS
    Abbassi, Mohamed Tahar Kadaoui
    Sarih, Maati
    ARCHIVUM MATHEMATICUM, 2005, 41 (01): : 71 - 92
  • [4] MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS
    吉敏
    ChineseScienceBulletin, 1989, (06) : 444 - 447
  • [5] DIFFERENTIAL GEOMETRY OF FRAME BUNDLES OF RIEMANNIAN MANIFOLDS
    MOK, KP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 302 : 16 - 31
  • [6] On almost hyperHermitian structures on Riemannian manifolds and tangent bundles
    Bogdanovich, Serge A.
    Ermolitski, Alexander A.
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (05): : 615 - 623
  • [7] Geometry of Riemannian manifolds and their unit tangent sphere bundles
    Boeckx, E
    Vanhecke, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (3-4): : 509 - 533
  • [8] Wick quantization of cotangent bundles over Riemannian manifolds
    Gorbunov, IV
    Lyakhovich, SL
    Sharapov, AA
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (01) : 98 - 121
  • [9] AN AREA BOUND FOR SURFACES IN RIEMANNIAN MANIFOLDS
    Bangert, Victor
    Kuwert, Ernst
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2025, 129 (01) : 65 - 113
  • [10] MINIMAL FLOWS AND SURFACES IN RIEMANNIAN MANIFOLDS
    TKHI, DC
    DOKLADY AKADEMII NAUK SSSR, 1977, 233 (01): : 21 - 22