Effect of van der Waals interactions on the stability of SiC polytypes

被引:16
作者
Kawanishi, Sakiko [1 ,2 ]
Mizoguchi, Teruyasu [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
基金
日本学术振兴会;
关键词
CUBIC SILICON-CARBIDE; ELECTRONIC-PROPERTIES; SUBLIMATION GROWTH; LIQUID-PHASE; NUCLEATION; ENERGY;
D O I
10.1063/1.4948329
中图分类号
O59 [应用物理学];
学科分类号
摘要
Density functional theory calculations with a correction of the long-range dispersion force, namely, the van der Waals (vdW) force, are performed for SiC polytypes. The lattice parameters are in good agreement with those obtained from the experiments. Furthermore, the stability of the polytypes in the experiments, which show 3C-SiC as the most stable, is reproduced by the present calculations. The effects of the vdW force on the electronic structure and the stability of polytypes are discussed. We observe that the vdW interaction is more sensitive to the cubic site than the hexagonal site. Thus, the influence of the vdW force increases with decreasing the hexagonality of the polytype, which results in the confirmation that the most stable polytype is 3C-SiC. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Quantum vacuum photon modes and repulsive Lifshitz-van der Waals interactions
    Dellieu, Louis
    Deparis, Olivier
    Muller, Jerome
    Kolaric, Branko
    Sarrazin, Michael
    PHYSICAL REVIEW B, 2015, 92 (23)
  • [22] Van der Waals interactions in linear chains with long-range correlated disorder
    Mualem, Yuval
    Poddubny, Alexander N.
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [23] Physical Adsorption: Theory of van der Waals Interactions between Particles and Clean Surfaces
    Tao, Jianmin
    Rappe, Andrew M.
    PHYSICAL REVIEW LETTERS, 2014, 112 (10)
  • [24] Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures
    Pei, Qing-Xiang
    Zhang, Xiaoliang
    Ding, Zhiwei
    Zhang, Ying-Yan
    Zhang, Yong-Wei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (26) : 17180 - 17186
  • [25] Heteroepitaxial van der Waals semiconductor superlattices
    Jin, Gangtae
    Lee, Chang-Soo
    Okello, Odongo F. N.
    Lee, Suk-Ho
    Park, Min Yeong
    Cha, Soonyoung
    Seo, Seung-Young
    Moon, Gunho
    Min, Seok Young
    Yang, Dong-Hwan
    Han, Cheolhee
    Ahn, Hyungju
    Lee, Jekwan
    Choi, Hyunyong
    Kim, Jonghwan
    Choi, Si-Young
    Jo, Moon-Ho
    NATURE NANOTECHNOLOGY, 2021, 16 (10) : 1092 - +
  • [26] Geometrothermodynamics of Van der Waals black hole
    Hu, Yumin
    Chen, Juhua
    Wang, Yongjiu
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (12)
  • [27] van der Waals Heteroepitaxy of Semiconductor Nanowires
    Hong, Young Joon
    Lee, Chul-Ho
    SEMICONDUCTOR NANOWIRES I: GROWTH AND THEORY, 2015, 93 : 125 - 172
  • [28] van der Waals Function for Molecular Mechanics
    Yang, Li
    Sun, Lei
    Deng, Wei-Qiao
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (10) : 2102 - 2107
  • [29] Spin valve effect in VN/GaN/VN van der Waals heterostructures
    Ye, Haoshen
    Zhu, Yijie
    Bai, Dongmei
    Zhang, Junting
    Wu, Xiaoshan
    Wang, Jianli
    PHYSICAL REVIEW B, 2021, 103 (03)
  • [30] Graphene-based SiC Van der Waals heterostructures: nonequilibrium molecular dynamics simulation study
    Zanane, F. Z.
    Sadki, K.
    Drissi, L. B.
    Saidi, E. H.
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (04)