Nonlinear dynamics analysis of a new autonomous chaotic system

被引:20
作者
Chu, Yan-Dong
Li, Xian-Feng [1 ]
Zhang, Jian-Gang
Chang, Ying-Xiang
机构
[1] Lanzhou Jiaotong Univ, Sch Math Phys & Software Engn, Lanzhou 730070, Peoples R China
[2] Lanzhou Jiaotong Univ, Nonlinear Sci Res Ctr, Lanzhou 730070, Peoples R China
来源
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A | 2007年 / 8卷 / 09期
基金
中国国家自然科学基金;
关键词
Lyapunov exponents; bifurcation; chaos; phase space; poincare sections;
D O I
10.1631/jzus.2007.A1408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, a new nonlinear autonomous system introduced by Chlouverakis and Sprott is studied further, to present very rich and complex nonlinear dynamical behaviors. Some basic dynamical properties are studied either analytically or numerically, such as Poincare map, Lyapunov exponents and Lyapunov dimension. Based on this flow, a new almost-Hamilton chaotic system with very high Lyapunov dimensions is constructed and investigated. Two new nonlinear autonomous systems can be changed into one another by adding or omitting some constant coefficients.
引用
收藏
页码:1408 / 1413
页数:6
相关论文
共 15 条
[1]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[2]   Chaotic hyperjerk systems [J].
Chlouverakis, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (03) :739-746
[3]   Color maps of the Kaplan-Yorke dimension in optically driven lasers: Maximizing the dimension and almost-Hamiltonian chaos [J].
Chlouverakis, KE .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (09) :3011-3021
[4]   A comparison of correlation and Lyapunov dimensions [J].
Chlouverakis, KE ;
Sprott, JC .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 200 (1-2) :156-164
[5]   Stability maps of injection-locked laser diodes using the largest Lyapunov exponent [J].
Chlouverakis, KE ;
Adams, MJ .
OPTICS COMMUNICATIONS, 2003, 216 (4-6) :405-412
[6]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[7]   THE LIAPUNOV DIMENSION OF STRANGE ATTRACTORS [J].
FREDERICKSON, P ;
KAPLAN, JL ;
YORKE, ED ;
YORKE, JA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 49 (02) :185-207
[8]   Dynamic stabilization in the double-well Duffing oscillator [J].
Kim, SY ;
Kim, Y .
PHYSICAL REVIEW E, 2000, 61 (06) :6517-6520
[9]  
Liu Y., 2001, Nonlinear Vibrations
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO