Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors

被引:35
作者
Yang, Hou-Yun [1 ]
He, Chuan-Shu [1 ]
Li, Lei [1 ]
Zhang, Jie [1 ]
Shen, Jin-You [2 ]
Mu, Yang [1 ,2 ]
Yu, Han-Qing [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, CAS Key Lab Urban Pollutant Convers, Hefei 230026, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Environm & Biol Engn, Jiangsu Key Lab Chem Pollut Control & Resources R, Nanjing 210094, Jiangsu, Peoples R China
关键词
MICROBIAL FUEL-CELLS; ELECTRICITY-GENERATION; ELECTRON-TRANSFER; METHYL-ORANGE; DECOLORIZATION; CHAMBER; REMOVAL; PERFORMANCE; REDUCTION; ACETATE;
D O I
10.1038/srep27243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study explored the influence of several key factors on the process and kinetics of azo dye decolourization in bioelectrochemical systems (BESs), including cathode potential, dissolved oxygen (DO) concentration of catholyte and biofilm formed on the cathode. The results show that azo dye methyl orange (MO) decolourization in the BES could be well described with the pseudo first-order kinetics. The MO decolourization efficiency increased from 0 to 94.90 +/- 0.01% and correspondingly the reaction rate constant increased from 0 to 0.503 +/- 0.001 h(-1) with the decrease in cathodic electrode potential from -0.2 to -0.8 V vs Ag/AgCl. On the contrary, DO concentration of the catholyte had a negative impact on MO decolourization in the BES. When DO concentration increased from zero to 5.80 mg L-1, the MO decolourization efficiency decreased from 87.19 +/- 4.73% to 27.77 +/- 0.06% and correspondingly the reaction rate constant reduced from 0.207 +/- 0.042 to 0.033 +/- 0.007 h(-1). Additionally, the results suggest that the biofilm formed on the cathode could led to an adverse rather than a positive effect on azo dye decolourization in the BES in terms of efficiency and kinetics.
引用
收藏
页数:9
相关论文
共 46 条
[1]   Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE [J].
Aulenta, Federico ;
Catervi, Alessandro ;
Majone, Mauro ;
Panero, Stefania ;
Reale, Priscilla ;
Rossetti, Simona .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (07) :2554-2559
[2]   Dechlorination of Trichloroethene in a Continuous-Flow Bioelectrochemical Reactor: Effect of Cathode Potential on Rate, Selectivity, and Electron Transfer Mechanisms [J].
Aulenta, Federico ;
Tocca, Lorenzo ;
Verdini, Roberta ;
Reale, Priscilla ;
Majone, Mauro .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (19) :8444-8451
[3]   Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1 [J].
Cai, Pei-Jie ;
Xiao, Xiang ;
He, Yan-Rong ;
Li, Wen-Wei ;
Chu, Jian ;
Wu, Chao ;
He, Meng-Xing ;
Zhang, Zhe ;
Sheng, Guo-Ping ;
Lam, Michael Hon-Wah ;
Xu, Fang ;
Yu, Han-Qing .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (04) :1769-1776
[4]   Increased performance of single-chamber microbial fuel cells using an improved cathode structure [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (03) :489-494
[5]  
Cui D., 2011, J. Environ. Anal. Toxicol, VS3, P001
[6]   Enhanced decolorization of azo dye in a small pilot-scale anaerobic baffled reactor coupled with biocatalyzed electrolysis system (ABR-BES): A design suitable for scaling-up [J].
Cui, Dan ;
Guo, Yu-Qi ;
Lee, Hyung-Sool ;
Wu, Wei-Min ;
Liang, Bin ;
Wang, Ai-Jie ;
Cheng, Hao-Yi .
BIORESOURCE TECHNOLOGY, 2014, 163 :254-261
[7]   Efficient azo dye removal in bioelectrochemical system and post-aerobic bioreactor: Optimization and characterization [J].
Cui, Dan ;
Guo, Yu-Qi ;
Lee, Hyung-Sool ;
Cheng, Hao-Yi ;
Liang, Bin ;
Kong, Fan-Ying ;
Wang, You-Zhao ;
Huang, Li-Ping ;
Xu, Mei-Ying ;
Wang, Ai-Jie .
CHEMICAL ENGINEERING JOURNAL, 2014, 243 :355-363
[8]   Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor [J].
Cui, Dan ;
Guo, Yu-Qi ;
Cheng, Hao-Yi ;
Liang, Bin ;
Kong, Fan-Ying ;
Lee, Hyung-Sool ;
Wang, Ai-Jie .
JOURNAL OF HAZARDOUS MATERIALS, 2012, 239 :257-264
[9]   Role of Sulfur during Acetate Oxidation in Biological Anodes [J].
Dutta, Paritam K. ;
Keller, Juerg ;
Yuan, Zhiguo ;
Rozendal, Rene A. ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3839-3845
[10]   New applications and performance of bioelectrochemical systems [J].
Hamelers, Hubertus V. M. ;
Ter Heijne, Annemiek ;
Sleutels, Tom H. J. A. ;
Jeremiasse, Adriaan W. ;
Strik, David P. B. T. B. ;
Buisman, Cees J. N. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 85 (06) :1673-1685