Spatially-Coupled Multi-Edge Type LDPC Codes with Bounded Degrees that Achieve Capacity on the BEC under BP Decoding

被引:0
作者
Obata, Naruomi [1 ]
Jian, Yung-Yih
Kasai, Kenta [1 ]
Pfister, Henry D.
机构
[1] Tokyo Inst Technol, Dept Commun & Comp Engn, Tokyo, Japan
来源
2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT) | 2013年
基金
美国国家科学基金会;
关键词
multi-edge type LDPC codes; MacKay-Neal codes; spatial coupling; density evolution; potential functions; ERROR-CORRECTING CODES; PARITY-CHECK CODES; ERASURE CHANNEL; COMPLEXITY; ENSEMBLES; PERFORMANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional (or spatially-coupled) low-density parity-check (LDPC) codes have now been shown to approach capacity for a variety of problems. Yet, most of these results require sequences of regular LDPC ensembles with increasing variable and check degrees. Previously, Kasai and Sakaniwa showed empirically that, for the BEC, this limitation can be overcome by using spatially-coupled MacKay-Neal (MN) and Hsu-Anastasopoulos (HA) ensembles. In this paper, we prove this analytically for (k,2,2)-MN and (2,k,2)-HA ensembles when k is at least 3. The proof is based on the simple approach to threshold saturation, introduced by Yedla et al., which relies on potential functions. The key step is verifying the non-negativity of a potential function associated with the uncoupled system. Along the way, we derive the potential function general multi-edge type (MET) LDPC ensembles and establish a duality relationship between dual ensembles of MET LDPC codes.
引用
收藏
页码:2433 / +
页数:2
相关论文
共 20 条
[1]  
[Anonymous], 2003, EXPLORING ARTIFICIAL
[2]  
Donoho D. L., 2011, ARXIV11120708
[3]   Time-varying periodic convolutional codes with low-density parity-check matrix [J].
Felstrom, AJ ;
Zigangirov, KS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2181-2191
[4]   Codes on graphs: Normal realizations [J].
Forney, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :520-548
[5]  
Hsu C. H., 2005, P 43 ANN ALL C COMM
[6]   Capacity-Achieving Codes With Bounded Graphical Complexity and Maximum Likelihood Decoding [J].
Hsu, Chun-Hao ;
Anastasopoulos, Achilleas .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (03) :992-1006
[7]  
Kasai K, 2011, IEEE INT SYMP INFO, P747, DOI 10.1109/ISIT.2011.6034233
[8]  
Kudekar S., 2012, IEEE T INFORM UNPUB
[9]   Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC [J].
Kudekar, Shrinivas ;
Richardson, Thomas J. ;
Urbanke, Ruediger L. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :803-834
[10]   Iterative Decoding Threshold Analysis for LDPC Convolutional Codes [J].
Lentmaier, Michael ;
Sridharan, Arvind ;
Costello, Daniel J., Jr. ;
Zigangirov, Kamil Sh. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (10) :5274-5289