Transport properties of highly dense proton-conducting BaCe0.8-xZrxDy0.2O3-δ materials in low- and high-temperature ranges

被引:33
作者
Danilov, Nikolay A. [1 ,2 ]
Lyagaeva, Julia G. [1 ,2 ]
Medvedev, Dmitry A. [1 ,2 ]
Demin, Anatoly K. [1 ,2 ]
Tsiakaras, Panagiotis [1 ,3 ]
机构
[1] Inst High Temp Electrochem, Lab Electrochem Devices Based Solid Oxide Proton, Ekaterinburg 620990, Russia
[2] Ural Fed Univ, Ekaterinburg 620002, Russia
[3] Univ Thessaly, Sch Engn, Dept Mech Engn, Volos 38334, Volos, Greece
基金
俄罗斯科学基金会;
关键词
Perovskite; BaCeO3; BaZrO3; Bulk and grain boundary transport; Proton conductivity; FUEL-CELLS; CHEMICAL-STABILITY; IONIC-CONDUCTIVITY; GRAIN-BOUNDARIES; OXIDE; ELECTROLYTES; CONVERSION; PERFORMANCE; GD; BACE0.8-XZRXY0.2O3-DELTA;
D O I
10.1016/j.electacta.2018.07.179
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Proton-conducting materials constitute a class of oxide compounds possessing the required properties for application as electrolytes for low- and intermediate temperature solid oxide cells. In the present investigation, new highly dense BaCe0.8-xZrxDy0.2O3-delta ceramic materials (x = 0.2 ... 0.6, Delta x = 0.1) are successfully prepared and their electrochemical properties are thoroughly characterised. The separation of total conductivity in bulk and grain boundary components along with ionic and electronic contributions is performed using 2-probe AC and 4-probe DC conductivity measurements. The obtained results reveal that the bulk region determines the transport properties of the materials, starting from similar to 190 degrees C for x = 0.2 and 470 degrees C for x = 0.6, whereas at lower temperatures the total conductivity is controlled by the grain boundaries. According to high-temperature measurements performed in air and hydrogen atmospheres with a wide water vapour partial pressure variation, the Zr-enriched samples (in comparison with the Ce-enriched ones) exhibit a higher contribution of electronic conductivity in oxidising atmospheres and a lower contribution of proton conductivity in reducing atmospheres. The negative effects of Zr for Ce substitution on the transport properties are compensated by their higher chemical stability, motivating the optimal composition exploration required for the specified electrochemical devices. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:551 / 559
页数:9
相关论文
共 59 条
[31]   Comparison of Space-Charge Formation at Grain Boundaries in Proton-Conducting BaZrO3 and BaCeO3 [J].
Lindman, Anders ;
Helgee, Edit E. ;
Wahnstrom, Goran .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7931-7941
[32]   The pivotal role of the dopant choice on the thermodynamics of hydration and associations in proton conducting BaCe0.9X0.1O3-δ (X = Sc, Ga, Y, In, Gd and Er) [J].
Loken, Andreas ;
Bjorheim, Tor Svendsen ;
Haugsrud, Reidar .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23289-23298
[33]   A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells [J].
Lyagaeva, Julia ;
Danilov, Nikolay ;
Vdovin, Gennady ;
Bu, Junfu ;
Medvedev, Dmitry ;
Demin, Anatoly ;
Tsiakaras, Panagiotis .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (40) :15390-15399
[34]   Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials [J].
Medvedev, D. ;
Lyagaeva, J. ;
Plaksin, S. ;
Demin, A. ;
Tsiakaras, P. .
JOURNAL OF POWER SOURCES, 2015, 273 :716-723
[35]   Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes [J].
Medvedev, D. A. ;
Lyagaeva, J. G. ;
Gorbova, E. V. ;
Demin, A. K. ;
Tsiakaras, P. .
PROGRESS IN MATERIALS SCIENCE, 2016, 75 :38-79
[36]   Status report on high temperature fuel cells in Poland - Recent advances and achievements [J].
Molenda, J. ;
Kupecki, J. ;
Baron, R. ;
Blesznowski, M. ;
Brus, G. ;
Brylewski, T. ;
Bucko, M. ;
Chmielowiec, J. ;
Cwieka, K. ;
Gazda, M. ;
Gil, A. ;
Jasinski, P. ;
Jaworski, Z. ;
Karczewski, J. ;
Kawalec, M. ;
Kluczowski, R. ;
Krauz, M. ;
Krok, F. ;
Lukasik, B. ;
Malys, M. ;
Mazur, A. ;
Mielewczyk-Gryn, A. ;
Milewski, J. ;
Molin, S. ;
Mordarski, G. ;
Mosialek, M. ;
Motylinski, K. ;
Naumovich, E. N. ;
Nowak, P. ;
Pasciak, G. ;
Pianko-Oprych, P. ;
Pomykalska, D. ;
Rekas, M. ;
Sciazko, A. ;
Swierczek, K. ;
Szmyd, J. ;
Wachowski, S. ;
Wejrzanowski, T. ;
Wrobel, W. ;
Zagorski, K. ;
Zajac, W. ;
Zurawska, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (07) :4366-4403
[37]   Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor [J].
Morejudo, S. H. ;
Zanon, R. ;
Escolastico, S. ;
Yuste-Tirados, I. ;
Malerod-Fjeld, H. ;
Vestre, P. K. ;
Coors, W. G. ;
Martinez, A. ;
Norby, T. ;
Serra, J. M. ;
Kjolseth, C. .
SCIENCE, 2016, 353 (6299) :563-566
[38]   Synthesis and conductivity of Ba(Ce,Zr,Y)O3-δ electrolytes for PCFCs by new nitrate-free combustion method [J].
Nasani, Narendar ;
Dias, Paulo A. N. ;
Saraiva, Jorge A. ;
Fagg, Duncan P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (20) :8461-8470
[39]   Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC) [J].
Ni, Meng ;
Leung, Michael K. H. ;
Leung, Dennis Y. C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (09) :2337-2354
[40]   Proton-conducting oxide with redox protonation and its application to a hydrogen sensor with a self-standard electrode [J].
Okuyama, Yuji ;
Nagamine, Shinya ;
Nakajima, Akira ;
Sakai, Go ;
Matsunaga, Naoki ;
Takahashi, Fusako ;
Kimata, Koji ;
Oshima, Tomoko ;
Tsuneyoshi, Koji .
RSC ADVANCES, 2016, 6 (40) :34019-34026