Supersymmetric interpretation of the muon g - 2 anomaly

被引:81
作者
Endo, Motoi [1 ,2 ,3 ]
Hamaguchi, Koichi [4 ]
Iwamoto, Sho [5 ]
Kitahara, Teppei [6 ,7 ]
机构
[1] KEK, IPNS, KEK Theory Ctr, Tsukuba, Ibaraki 3050801, Japan
[2] Grad Univ Adv Studies Sokendai, Tsukuba, Ibaraki 3050801, Japan
[3] Univ Tokyo, UTIAS, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
[4] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
[5] Eotvos Lorand Univ, ELTE, Pazmany Peter Setany 1-A, H-1117 Budapest, Hungary
[6] Nagoya Univ, Inst Adv Res, Nagoya, Aichi 4648601, Japan
[7] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan
关键词
Supersymmetry Phenomenology; DARK-MATTER; G-2; PARTICLES; PROGRAM; MOMENT; DECAYS; MODEL;
D O I
10.1007/JHEP07(2021)075
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Fermilab Muon g- 2 collaboration recently announced the first result of measurement of the muon anomalous magnetic moment (g- 2), which confirmed the previous result at the Brookhaven National Laboratory and thus the discrepancy with its Standard Model prediction. We revisit low-scale supersymmetric models that are naturally capable to solve the muon g- 2 anomaly, focusing on two distinct scenarios: chargino-contribution dominated and pure-bino-contribution dominated scenarios. It is shown that the slepton pair-production searches have excluded broad parameter spaces for both two scenarios, but they are not closed yet. For the chargino-dominated scenario, the models with m mu</mml:mover>L greater than or similar to m chi</mml:mover>1 +/-</mml:msubsup> are still widely allowed. For the bino-dominated scenario, we find that, although slightly non-trivial, the region with low tan beta with heavy higgsinos is preferred. In the case of universal slepton masses, the low mass regions with m<mml:mover accent="true">mu <mml:mo stretchy="true"></mml:mover> less than or similar to 230 GeV can explain the g- 2 anomaly while satisfying the LHC constraints. Furthermore, we checked that the stau-bino coannihilation works properly to realize the bino thermal relic dark matter. We also investigate heavy staus case for the bino-dominated scenario, where the parameter region that can explain the muon g- 2 anomaly is stretched to <mml:msub>m<mml:mover accent="true">mu <mml:mo stretchy="true"></mml:mover> less than or similar to 1.3 TeV.
引用
收藏
页数:26
相关论文
共 107 条
[1]  
Aad G, 2020, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2020)005
[2]  
Aad G, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-020-8050-3
[3]  
Aad G, 2020, EUR PHYS J C, V80, DOI 10.1140/epjc/s10052-019-7594-6
[4]  
Aad G, 2014, J HIGH ENERGY PHYS, P1, DOI 10.1007/JHEP05(2014)071
[5]  
Aad G. et al. [ATLAS Collaboration], 2020, Phys. Rev. D, V101, DOI [10.1103/PhysRevD.101.052005, DOI 10.1103/PHYSREVD.101.052005]
[6]   Testing electroweak SUSY for muon g-2 and dark matter at the LHC and beyond [J].
Abdughani, Murat ;
Hikasa, Ken-ichi ;
Wu, Lei ;
Yang, Jin Min ;
Zhao, Jun .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
[7]   A new approach for measuring the muon anomalous magnetic moment and electric dipole moment [J].
Abe, M. ;
Bae, S. ;
Beer, G. ;
Bunce, G. ;
Choi, H. ;
Choi, S. ;
Chung, M. ;
da Silva, W. ;
Eidelman, S. ;
Finger, M. ;
Fukao, Y. ;
Fukuyama, T. ;
Haciomeroglu, S. ;
Hasegawa, K. ;
Hayasaka, K. ;
Hayashizaki, N. ;
Hisamatsu, H. ;
Iijima, T. ;
Iinuma, H. ;
Ikeda, H. ;
Ikeno, M. ;
Inami, K. ;
Ishida, K. ;
Itahashi, T. ;
Iwasaki, M. ;
Iwashita, Y. ;
Iwata, Y. ;
Kadono, R. ;
Kamal, S. ;
Kamitani, T. ;
Kanda, S. ;
Kapusta, F. ;
Kawagoe, K. ;
Kawamura, N. ;
Kim, B. ;
Kim, Y. ;
Kishishita, T. ;
Kitamura, R. ;
Ko, H. ;
Kohriki, T. ;
Kondo, Y. ;
Kume, T. ;
Lee, M. J. ;
Lee, S. ;
Lee, W. ;
Marshall, G. M. ;
Matsuda, Y. ;
Mibe, T. ;
Miyake, Y. ;
Murakami, T. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (05)
[8]   Indirect studies of electroweakly interacting particles at 100 TeV hadron colliders [J].
Abe, Tomohiro ;
Chigusa, So ;
Ema, Yohei ;
Moroi, Takeo .
PHYSICAL REVIEW D, 2019, 100 (05)
[9]   Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm [J].
Abi, B. ;
Albahri, T. ;
Al-Kilani, S. ;
Allspach, D. ;
Alonzi, L. P. ;
Anastasi, A. ;
Anisenkov, A. ;
Azfar, F. ;
Badgley, K. ;
Baessler, S. ;
Bailey, I ;
Baranov, V. A. ;
Barlas-Yucel, E. ;
Barrett, T. ;
Barzi, E. ;
Basti, A. ;
Bedeschi, F. ;
Behnke, A. ;
Berz, M. ;
Bhattacharya, M. ;
Binney, H. P. ;
Bjorkquist, R. ;
Bloom, P. ;
Bono, J. ;
Bottalico, E. ;
Bowcock, T. ;
Boyden, D. ;
Cantatore, G. ;
Carey, R. M. ;
Carroll, J. ;
Casey, B. C. K. ;
Cauz, D. ;
Ceravolo, S. ;
Chakraborty, R. ;
Chang, S. P. ;
Chapelain, A. ;
Chappa, S. ;
Charity, S. ;
Chislett, R. ;
Choi, J. ;
Chu, Z. ;
Chupp, T. E. ;
Convery, M. E. ;
Conway, A. ;
Corradi, G. ;
Corrodi, S. ;
Cotrozzi, L. ;
Crnkovic, J. D. ;
Dabagov, S. ;
De Lurgio, P. M. .
PHYSICAL REVIEW LETTERS, 2021, 126 (14)
[10]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641