Intrusion detection based on Machine Learning techniques in computer networks

被引:57
作者
Dina, Ayesha S. [1 ]
Manivannan, D. [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40508 USA
关键词
Network security; Computer security; Cybersecurity; Intrusion detection; Intrusion prevention; Machine learning; DETECTION SYSTEMS; IOT; UNIVERSAL; ALGORITHM; THINGS; MODEL;
D O I
10.1016/j.iot.2021.100462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusions in computer networks have increased significantly in the last decade, due in part to a profitable underground cyber-crime economy and the availability of sophisticated tools for launching such intrusions. Researchers in industry and academia have been proposing methods and building systems for detecting and preventing such security breaches for more than four decades. Solutions proposed for dealing with network intrusions can be broadly classified as signature-based and anomaly-based. Signature-based intrusion detection systems look for patterns that match known attacks. On the other hand, anomaly-based intrusion detection systems develop a model for distinguishing legitimate users' behavior from that of malicious users' and hence are capable of detecting unknown attacks. One of the approaches used to classify legitimate and anomalous behavior is to use Machine Learning (ML) techniques. Several intrusion detection systems based on ML techniques have been proposed in the literature. In this paper, we present a comprehensive critical survey of ML-based intrusion detection approaches presented in the literature in the last ten years. This survey would serve as a supplement to other general surveys on intrusion detection as well as a reference to recent work done in the area for researchers working in ML-based intrusion detection systems. We also discuss some open issues that need to be addressed.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Machine Learning-Based Adaptive Synthetic Sampling Technique for Intrusion Detection
    Zakariah, Mohammed
    AlQahtani, Salman A. A.
    Al-Rakhami, Mabrook S. S.
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [32] A Novel Feature Encoding Scheme for Machine Learning Based Malware Detection Systems
    Das, Vipin
    Nair, Binoy B.
    Thiruvengadathan, Rajagopalan
    IEEE ACCESS, 2024, 12 : 91187 - 91216
  • [33] A SURVEY ON INTRUSION DETECTION SYSTEM IN AD HOC NETWORKS BASED ON MACHINE LEARNING
    Abbood, Zainab Ali
    Atilla, Dogu Cagdas
    Aydin, Cagatay
    Mahmoud, Mahmoud Shuker
    2021 INTERNATIONAL CONFERENCE OF MODERN TRENDS IN INFORMATION AND COMMUNICATION TECHNOLOGY INDUSTRY (MTICTI 2021), 2021, : 157 - 164
  • [34] Machine learning-based intrusion detection technology for wireless sensor networks
    Luo F.
    Wu F.
    Chen Q.
    He J.
    Kou L.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2020, 41 (03): : 433 - 440
  • [35] Feature extraction for machine learning-based intrusion detection in IoT networks
    Sarhan, Mohanad
    Layeghy, Siamak
    Moustafa, Nour
    Gallagher, Marcus
    Portmann, Marius
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 205 - 216
  • [36] Intrusion detection based on phishing detection with machine learning
    Jayaraj R.
    Pushpalatha A.
    Sangeetha K.
    Kamaleshwar T.
    Udhaya Shree S.
    Damodaran D.
    Measurement: Sensors, 2024, 31
  • [37] Towards Machine Learning Based Intrusion Detection in IoT Networks
    Islam, Nahida
    Farhin, Fahiba
    Sultana, Ishrat
    Kaiser, M. Shamim
    Rahman, Md. Sazzadur
    Mahmud, Mufti
    Hosen, A. S. M. Sanwar
    Cho, Gi Hwan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 1801 - 1821
  • [38] Machine Learning Based Network Intrusion Detection
    Lee, Chie-Hong
    Su, Yann-Yean
    Lin, Yu-Chun
    Lee, Shie-Jue
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA), 2017, : 79 - 83
  • [39] An intrusion detection system based on hybrid machine learning classifier
    Reji, M.
    Joseph, Christeena
    Nancy, P.
    Mary, A. Lourdes
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4245 - 4255
  • [40] Review on Network Intrusion Detection Techniques using Machine Learning
    Shashank, K.
    Balachandra, Mamatha
    PROCEEDINGS OF 2018 IEEE DISTRIBUTED COMPUTING, VLSI, ELECTRICAL CIRCUITS AND ROBOTICS (DISCOVER), 2018, : 104 - 109