The average size of the 3-isogeny Selmer groups of elliptic curves y2 = x3 + k

被引:15
作者
Bhargava, Manjul [1 ]
Elkies, Noam [2 ]
Shnidman, Ari [3 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
[3] Hebrew Univ Jerusalem, Einstein Inst Math, Edmund J Safra Campus, IL-9190401 Jerusalem, Israel
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2020年 / 101卷 / 01期
关键词
NUMBER; TWISTS; RANKS; BIRCH;
D O I
10.1112/jlms.12271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The elliptic curve Ek:y2=x3+k admits a natural 3-isogeny phi k:Ek -> E-27k. We compute the average size of the phi k-Selmer group as k varies over the integers. Unlike previous results of Bhargava and Shankar on n-Selmer groups of elliptic curves, we show that this average can be very sensitive to congruence conditions on k; this sensitivity can be precisely controlled by the Tamagawa numbers of Ek and E-27k. As a consequence, we prove that the average rank of the curves Ek, k is an element of Z, is less than 1.21 and over 23% (respectively, 41%) of the curves in this family have rank 0 (respectively, 3-Selmer rank 1).
引用
收藏
页码:299 / 327
页数:29
相关论文
共 43 条
[1]  
Alpoge L., 2014, ARXIV14121047
[2]  
[Anonymous], 1991, LMS Student Texts
[3]  
[Anonymous], THESIS
[4]   Higher composition laws I: A new view on Gauss composition, and quadratic generalizations [J].
Bhargava, M .
ANNALS OF MATHEMATICS, 2004, 159 (01) :217-250
[5]  
Bhargava M., 2017, ARXIV170909790
[6]  
Bhargava M., 2013, ARXIV13127859
[7]  
Bhargava M., PREPRINT
[8]  
Bhargava M., 2013, TATA I FUNDAM RES ST, V22, P23
[9]  
Bhargava M., 2015, ARXIV151203035
[10]  
Bhargava M., 2013, ARXIV13127333V1