Edge-Based Live Video Analytics for Drones

被引:11
|
作者
Wang, Junjue [1 ]
Feng, Ziqiang [1 ]
Chen, Zhuo [1 ]
George, Shilpa Anna [1 ]
Bala, Mihir [2 ]
Pillai, Padmanabhan [3 ]
Yang, Shao-Wen [3 ]
Satyanarayanan, Mahadev [1 ]
机构
[1] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Intel Labs, Santa Clara, CA USA
基金
美国国家科学基金会;
关键词
Photonics; Edge computing; Hall effect; Steady-state; Optical losses; Nonhomogeneous media; Perturbation methods; Visual analytics; Edge Computing; Live Video Analytics;
D O I
10.1109/MIC.2019.2909713
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Real-time video analytics on small autonomous drones poses several difficult challenges at the intersection of wireless bandwidth, processing capacity, energy consumption, result accuracy, and timeliness of results. In response to these challenges, this paper describes four strategies to build adaptive computer vision pipelines for domains such as search-and-rescue, surveillance, and wildlife conservation. Our experimental results show that a judicious combination of drone-based processing and edge-based processing can save substantial wireless bandwidth and thus improve scalability, without compromising result accuracy or latency.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 50 条
  • [1] eDashA: Edge-based Dash Cam Video Analytics
    King, Jayden
    Lee, Young Choon
    2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE, 2023, : 204 - 206
  • [2] Bandwidth-efficient Live Video Analytics for Drones via Edge Computing
    Wang, Junjue
    Feng, Ziqiang
    Chen, Zhuo
    George, Shilpa
    Bala, Mihir
    Pillai, Padmanabhan
    Yang, Shao-Wen
    Satyanarayanan, Mahadev
    2018 THIRD IEEE/ACM SYMPOSIUM ON EDGE COMPUTING (SEC), 2018, : 159 - 173
  • [3] Privacy-Preserving Live Video Analytics for Drones via Edge Computing
    Nagasubramaniam, Piyush
    Wu, Chen
    Sun, Yuanyi
    Karamchandani, Neeraj
    Zhu, Sencun
    He, Yongzhong
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [4] ViEdge: An Edge-based Platform for Video Analytics Applications in Smart Estates
    Choudhary, Vishal
    Aggarwal, Rahul
    Lim, Hock Beng
    Chen, Binbin
    2024 33RD INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS, ICCCN 2024, 2024,
  • [5] Adaptive Configuration Selection and Bandwidth Allocation for Edge-Based Video Analytics
    Zhang, Sheng
    Wang, Can
    Jin, Yibo
    Wu, Jie
    Qian, Zhuzhong
    Xiao, Mingjun
    Lu, Sanglu
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2022, 30 (01) : 285 - 298
  • [6] OsmoticGate: Adaptive Edge-Based Real-Time Video Analytics for the Internet of Things
    Qian, Bin
    Wen, Zhenyu
    Tang, Junqi
    Yuan, Ye
    Zomaya, Albert. Y. Y.
    Ranjan, Rajiv
    IEEE TRANSACTIONS ON COMPUTERS, 2023, 72 (04) : 1178 - 1193
  • [7] Live Migration of Video Analytics Applications in Edge Computing
    Rong, Chenghao
    Wang, Jessie Hui
    Wang, Jilong
    Zhou, Yipeng
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (03) : 2078 - 2092
  • [8] VPPlus: Exploring the Potentials of Video Processing for Live Video Analytics at the Edge
    Guo, Junpeng
    Xia, Shengqing
    Peng, Chunyi
    2022 IEEE/ACM 30TH INTERNATIONAL SYMPOSIUM ON QUALITY OF SERVICE (IWQOS), 2022,
  • [9] Joint Configuration Adaptation and Bandwidth Allocation for Edge-based Real-time Video Analytics
    Wang, Can
    Zhang, Sheng
    Chen, Yu
    Qian, Zhuzhong
    Wu, Jie
    Xiao, Mingjun
    IEEE INFOCOM 2020 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, 2020, : 257 - 266
  • [10] Edge-Based Live Learning for Robot Survival
    Sturzinger, Eric
    Harkes, Jan
    Pillai, Padmanabhan
    Satyanarayanan, Mahadev
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2025, 13 (01) : 34 - 47