Secondary metabolites in the drought stress tolerance of crop plants: A review

被引:170
|
作者
Yadav, Bindu [1 ]
Jogawat, Abhimanyu [2 ]
Rahman, Md Samiur [3 ]
Narayan, Om Prakash [4 ]
机构
[1] JNU, Sch Environm Sci, New Delhi, India
[2] Natl Inst Plant Genome Res, New Delhi, India
[3] Patliputra Univ, AN Coll, Dept Biotechnol, Patna, Bihar, India
[4] Tufts Univ, BME Dept, Medford, MA USA
来源
GENE REPORTS | 2021年 / 23卷
关键词
Abiotic stress; Crop improvement; Drought tolerance; Secondary metabolites; RICE ORYZA-SATIVA; EXPRESSED SEQUENCE TAGS; WATER-DEFICIT STRESS; ABIOTIC STRESS; GENE-EXPRESSION; FLAVONOIDS ACCUMULATION; TRANSCRIPTION FACTOR; PHENOLIC-COMPOUNDS; RESPONSIVE GENES; CONFERS DROUGHT;
D O I
10.1016/j.genrep.2021.101040
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plants encounter various abiotic stresses under field conditions. Among them, drought stress adversely affects crop productivity and threatens global food security. Drought stress triggers downstream pathways such as phytohormone homeostasis and their signaling pathways. Consequently, this initiates the biosynthesis of different types of protective secondary metabolites (SMs). SMs provide multistress tolerance, including abiotic and biotic stresses. In drought conditions, soil become dry, and drought stress is perceived through roots as a stress signal through cell to cell signaling networks. These stress signals subsequently travel towards leaves through root to shoot signaling via xylem to induce the systemic phytohormone signaling and SMs biosynthesis. Consequently, this triggers stomatal closure through vascular to guard cell signaling, which prevents water loss. Different regulatory pathways work together to regulate downstream plant responses to drought stress. These responses further minimize oxidative stress, excessive water loss, and other adverse effects of drought in plants. SMs scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and other oxidative damages under drought stress. Additionally, drought-induced volatile SMs alerts plant tissue to attain defensive drought stress mitigating processes via systemic induction of drought signaling. Modulation of the biosynthetic pathway genes of SMs could provide drought resistance. Expression analyses have revealed that genes encoding transcription factors such as MAT, MYB, ERF, CBL, CCR, and NAC play a crucial role in SM mediated drought response. Thus, SMs could perform a vital role in the drought stress condition in crop plants.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Approaches for the amelioration of adverse effects of drought stress on crop plants
    Dubey, Anamika
    Kumar, Ashwani
    Malla, Muneer Ahmad
    Chowdhary, Kanika
    Singh, Garima
    Ravikanth, Gudasalamani
    Harish
    Sharma, Satyawati
    Saati-Santamaria, Zaki
    Menendez, Esther
    Dames, Joanna Felicity
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2021, 26 (10): : 928 - 947
  • [12] Influence of abiotic stress signals on secondary metabolites in plants
    Ramakrishna, Akula
    Ravishankar, Gokare Aswathanarayana
    PLANT SIGNALING & BEHAVIOR, 2011, 6 (11) : 1720 - 1731
  • [13] Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants
    Kumar, Manoj
    Kumar Patel, Manish
    Kumar, Navin
    Bajpai, Atal Bihari
    Siddique, Kadambot H. M.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [14] Strategies to mitigate the adverse effect of drought stress on crop plants-influences of soil bacteria: A review
    Chandra, Priyanka
    Wunnava, Amoolya
    Verma, Pooja
    Chandra, Amaresh
    Sharma, Rakesh Kumar
    PEDOSPHERE, 2021, 31 (03) : 496 - 509
  • [15] Engineering drought tolerance in plants by modification of transcription and signalling factors
    Ahmed, Rida Fatima
    Irfan, Muhammad
    Shakir, Hafiz Abdullah
    Khan, Muhammad
    Chen, Lijing
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2020, 34 (01) : 781 - 789
  • [16] Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants
    Wani, Shabir H.
    Kumar, Vinay
    Shriram, Varsha
    Sah, Saroj Kumar
    CROP JOURNAL, 2016, 4 (03): : 162 - 176
  • [17] Silicon improves the drought tolerance in pepper plants through the induction of secondary metabolites, GA biosynthesis pathway, and suppression of chlorophyll degradation
    Mushtaq, Naveed
    Altaf, Muhammad Ahsan
    Ning, Jiahui
    Shu, Huangying
    Fu, Huizhen
    Lu, Xu
    Cheng, Shanhan
    Wang, Zhiwei
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2024, 214
  • [18] Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance
    Mahmood, Tahir
    Khalid, Shiguftah
    Abdullah, Muhammad
    Ahmed, Zubair
    Shah, Muhammad Kausar Nawaz
    Ghafoor, Abdul
    Du, Xiongming
    CELLS, 2020, 9 (01)
  • [19] Melatonin and Abiotic Stress Tolerance in Crop Plants
    Colombage, Roshira
    Singh, Mohan B.
    Bhalla, Prem L.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)
  • [20] Engineering Cold Stress Tolerance in Crop Plants
    Sanghera, Gulzar S.
    Wani, Shabir H.
    Hussain, Wasim
    Singh, N. B.
    CURRENT GENOMICS, 2011, 12 (01) : 30 - 43