Neural network enhanced hybrid quantum many-body dynamical distributions

被引:6
作者
Koch, Rouven [1 ]
Lado, Jose L. [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, Espoo 00076, Finland
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 03期
基金
芬兰科学院;
关键词
MONTE-CARLO;
D O I
10.1103/PhysRevResearch.3.033102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Computing dynamical distributions in quantum many-body systems represents one of the paradigmatic open problems in theoretical condensed matter physics. Despite the existence of different techniques both in real-time and frequency space, computational limitations often dramatically constrain the physical regimes in which quantum many-body dynamics can be efficiently solved. Here we show that the combination of machine-learning methods and complementary many-body tensor network techniques substantially decreases the computational cost of quantum many-body dynamics. We demonstrate that combining kernel polynomial techniques and real-time evolution, together with deep neural networks, allows to compute dynamical quantities faithfully. Focusing on many-body dynamical distributions, we show that this hybrid neural-network many-body algorithm, trained with single-particle data only, can efficiently extrapolate dynamics for many-body systems without prior knowledge. Importantly, this algorithm is shown to be substantially resilient to numerical noise, a feature of major importance when using this algorithm together with noisy many-body methods. Ultimately, our results provide a starting point towards neural-network powered algorithms to support a variety of quantum many-body dynamical methods, that could potentially solve computationally expensive many-body systems in a more efficient manner.
引用
收藏
页数:10
相关论文
共 77 条
[1]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[2]  
Assaad F. F., 2012, ALF ALGORITHMS LATTI, p11914V2
[3]   Driven Quantum Dynamics: Will It Blend? [J].
Banchi, Leonardo ;
Burgarth, Daniel ;
Kastoryano, Michael J. .
PHYSICAL REVIEW X, 2017, 7 (04)
[4]  
Barison S., ARXIV210104579
[5]   MONTE-CARLO CALCULATIONS OF COUPLED BOSON-FERMION SYSTEMS .1. [J].
BLANKENBECLER, R ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW D, 1981, 24 (08) :2278-2286
[6]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[7]   NetKet: A machine learning toolkit for many-body quantum systems [J].
Carleo, Giuseppe ;
Choo, Kenny ;
Hofmann, Damian ;
Smith, James E. T. ;
Westerhout, Tom ;
Alet, Fabien ;
Davis, Emily J. ;
Efthymiou, Stavros ;
Glasser, Ivan ;
Lin, Sheng-Hsuan ;
Mauri, Marta ;
Mazzola, Guglielmo ;
Mendl, Christian B. ;
van Nieuwenburg, Evert ;
O'Reilly, Ossian ;
Theveniaut, Hugo ;
Torlai, Giacomo ;
Vicentini, Filippo ;
Wietek, Alexander .
SOFTWAREX, 2019, 10
[8]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[9]   Machine learning for quantum matter [J].
Carrasquilla, Juan .
ADVANCES IN PHYSICS-X, 2020, 5 (01)
[10]  
Carrasquilla J, 2017, NAT PHYS, V13, P431, DOI [10.1038/NPHYS4035, 10.1038/nphys4035]