Sparsity-Aware Noise Subspace Fitting for DOA Estimation

被引:3
作者
Zheng, Chundi [1 ]
Chen, Huihui [1 ]
Wang, Aiguo [1 ]
机构
[1] Foshan Univ, Sch Elect Informat Engn, Foshan 528231, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
direction-of-arrival (DOA) estimation; sparse recovery; subspace fitting; array signal processing; linearly constrained quadratic programming (LCQP); MAXIMUM-LIKELIHOOD METHODS; ARRAY; ALGORITHM; LOCALIZATION; PROBABILITY; PERFORMANCE; RESOLUTION; LOCATION;
D O I
10.3390/s20010081
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose a sparsity-aware noise subspace fitting (SANSF) algorithm for direction-of-arrival (DOA) estimation using an array of sensors. The proposed SANSF algorithm is developed from the optimally weighted noise subspace fitting criterion. Our formulation leads to a convex linearly constrained quadratic programming (LCQP) problem that enjoys global convergence without the need of accurate initialization and can be easily solved by existing LCQP solvers. Combining the weighted quadratic objective function, the l(1) norm, and the non-negative constraints, the proposed SANSF algorithm can enhance the sparsity of the solution. Numerical results based on simulations, using real measured ultrasonic, and radar data, show that, compared to existing sparsity-aware methods, the proposed SANSF can provide enhanced resolution with a lower computational burden.
引用
收藏
页数:20
相关论文
共 50 条
[21]   Robust DOA estimation for burst impulsive noise [J].
Guo, Mengya ;
Sun, Yueping ;
Dai, Jisheng ;
Chang, Chunqi .
DIGITAL SIGNAL PROCESSING, 2021, 114
[22]   DOA Estimation in heteroscedastic noise [J].
Gerstoft, Peter ;
Nannuru, Santosh ;
Mecklenbraeuker, Christoph F. ;
Leus, Geert .
SIGNAL PROCESSING, 2019, 161 :63-73
[23]   Sparsity-aware reuse of coefficients normalised least mean squares [J].
Resende, L. C. ;
Haddad, D. B. ;
Ferreira, G. da. R. ;
Campelo, P. H. ;
Petraglia, M. R. .
ELECTRONICS LETTERS, 2019, 55 (09) :561-562
[24]   A Unified Approach for Sparsity-Aware and Maximum Correntropy Adaptive Filters [J].
Haddad, Diego Barreto ;
Petraglia, Mariane Rembold ;
Petraglia, Antonio .
2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, :170-174
[25]   Generalized Thresholding and Online Sparsity-Aware Learning in a Union of Subspaces [J].
Slavakis, Konstantinos ;
Kopsinis, Yannis ;
Theodoridis, Sergios ;
McLaughlin, Stephen .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (15) :3760-3773
[26]   Iterative subspace alternating projection method for GNSS multipath DOA estimation [J].
Chen, Xin ;
Morton, Yu .
IET RADAR SONAR AND NAVIGATION, 2016, 10 (07) :1260-1269
[27]   Real-Valued Weighted Subspace Fitting Algorithm for DOA Estimation with Block Sparse Recovery [J].
Li, Liangliang ;
Wang, Xianpeng ;
Shi, Jinmei ;
Lan, Xiang .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2023, 2023
[28]   DOA estimation methods using Weighted Subspace Fitting Technique based on immune evolutionary algorithm [J].
Ye, Fei ;
Luo, Jingqing ;
Yu, Zhifu .
ICEMI 2007: PROCEEDINGS OF 2007 8TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOL II, 2007, :233-236
[29]   Computationally efficient DOA estimation for coprime linear array: a successive signal subspace fitting algorithm [J].
Gong, Pan ;
Zhang, Xiaofei ;
Ahmed, Tanveer .
INTERNATIONAL JOURNAL OF ELECTRONICS, 2020, 107 (08) :1216-1238
[30]   Sparsity-Aware Tight Frame Learning for Rotary Machine Fault Diagnosis [J].
Zhang, Han ;
Chen, Xuefeng ;
Du, Zhaohui ;
Ma, Meng ;
Zhang, Xiaoli .
2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, :819-824