Sparsity-Aware Noise Subspace Fitting for DOA Estimation

被引:3
|
作者
Zheng, Chundi [1 ]
Chen, Huihui [1 ]
Wang, Aiguo [1 ]
机构
[1] Foshan Univ, Sch Elect Informat Engn, Foshan 528231, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
direction-of-arrival (DOA) estimation; sparse recovery; subspace fitting; array signal processing; linearly constrained quadratic programming (LCQP); MAXIMUM-LIKELIHOOD METHODS; ARRAY; ALGORITHM; LOCALIZATION; PROBABILITY; PERFORMANCE; RESOLUTION; LOCATION;
D O I
10.3390/s20010081
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We propose a sparsity-aware noise subspace fitting (SANSF) algorithm for direction-of-arrival (DOA) estimation using an array of sensors. The proposed SANSF algorithm is developed from the optimally weighted noise subspace fitting criterion. Our formulation leads to a convex linearly constrained quadratic programming (LCQP) problem that enjoys global convergence without the need of accurate initialization and can be easily solved by existing LCQP solvers. Combining the weighted quadratic objective function, the l(1) norm, and the non-negative constraints, the proposed SANSF algorithm can enhance the sparsity of the solution. Numerical results based on simulations, using real measured ultrasonic, and radar data, show that, compared to existing sparsity-aware methods, the proposed SANSF can provide enhanced resolution with a lower computational burden.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Covariance sparsity-aware DOA estimation for nonuniform noise
    He, Zhen-Qing
    Shi, Zhi-Ping
    Huang, Lei
    DIGITAL SIGNAL PROCESSING, 2014, 28 : 75 - 81
  • [2] Sparsity-Aware DOA Estimation Scheme for Noncircular Source in MIMO Radar
    Wang, Xianpeng
    Wang, Wei
    Li, Xin
    Liu, Qi
    Liu, Jing
    SENSORS, 2016, 16 (04)
  • [3] Sparsity-aware DOA estimation of quasi-stationary signals using nested arrays
    Wang, Yuexian
    Hashemi-Sakhtsari, Ahmad
    Trinkle, Matthew
    Ng, Brian W. H.
    SIGNAL PROCESSING, 2018, 144 : 87 - 98
  • [4] Sparsity-Aware Sensor Selection for Correlated Noise
    Jamali-Rad, Hadi
    Simonetto, Andrea
    Leus, Geert
    Ma, Xiaoli
    2014 17TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2014,
  • [5] Off-Grid DOA Estimation Based on Noise Subspace Fitting
    Duan, Huiping
    Qian, Zhigang
    Wang, Yanyan
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 675 - 678
  • [6] Sparsity-Aware Estimation of Nonlinear Volterra Kernels
    Kekatos, Vassilis
    Angelosante, Daniele
    Giannakis, Georgios B.
    2009 3RD IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2009, : 129 - 132
  • [7] Sparsity-Aware Estimation of CDMA System Parameters
    Daniele Angelosante
    Emanuele Grossi
    Georgios B. Giannakis
    Marco Lops
    EURASIP Journal on Advances in Signal Processing, 2010
  • [8] SPARSITY-AWARE ESTIMATION OF CDMA SYSTEM PARAMETERS
    Angelosante, D.
    Grossi, E.
    Giannakis, G. B.
    Lops, M.
    SPAWC: 2009 IEEE 10TH WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, 2009, : 697 - +
  • [9] Sparsity-Aware Estimation of CDMA System Parameters
    Angelosante, Daniele
    Grossi, Emanuele
    Giannakis, Georgios B.
    Lops, Marco
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,
  • [10] Covariance vector sparsity-aware DOA estimation for monostatic MIMO radar with unknown mutual coupling
    Liu, Jing
    Wang, Xianpeng
    Zhou, Weidong
    SIGNAL PROCESSING, 2016, 119 : 21 - 27