Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes

被引:871
作者
Zhang, Xue [1 ]
Liu, Ting [1 ]
Zhang, Shuofeng [1 ]
Huang, Xin [1 ]
Xu, Bingqing [1 ]
Lin, Yuanhua [1 ]
Xu, Ben [1 ]
Li, Liangliang [1 ]
Nan, Ce-Wen [1 ]
Shen, Yang [1 ]
机构
[1] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
关键词
POLYMER ELECTROLYTE; BATTERY SEPARATORS; LITHIUM BATTERIES; HIGH-VOLTAGE; MEMBRANES; STATE; COPOLYMER; BLENDS; PVDF; NANOPARTICLES;
D O I
10.1021/jacs.7b06364
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Easy processing and flexibility of polymer electrolytes make them very promising in developing all-solid-state lithium batteries. However, their low room temperature conductivity and poor mechanical and thermal properties still hinder their applications. Here, we use Li6.75La3Zr1.73Ta0.23O12 (LLZTO) ceramics to trigger structural modification of poly(vinylidene fluoride) (PVDF) polymer electrolyte. By combining experiments and first-principle calculations, we find that La atom of LLZTO could complex with the N atom and C=0 group of solvent molecules such as N,N-dimethylformamide along with electrons enriching at the N atom, which behaves like a Lewis base and induces the chemical dehydrofluorination of the PVDF skeleton. Partially modified PVDF chains activate the interactions between the PVDF matrix, lithium salt, and LLZTO fillers, hence leading to significantly improved performance of the flexible electrolyte membrane (e.g., a high ionic conductivity of about 5 x 10(-4) S cm(-1) at 25 degrees C, high mechanical strength, and good thermal stability). For further illustration, a solid-state lithium battery of LiCoO2 vertical bar PVDF-based membrane vertical bar Li is fabricated and delivers satisfactory rate capability and cycling stability at room temperature. Our study indicates that the LLZTO modifying PVDF membrane is a promising electrolyte used for all-solid-state lithium batteries.
引用
收藏
页码:13779 / 13785
页数:7
相关论文
共 51 条
[1]  
Abreha M., 2016, J CHEM PHYS LETT, V658, P240
[2]  
Armand M.B., 1979, FAST ION TRANSPORT S, V131
[3]   Poly(vinylidene fluoride) with improved functionalization for membrane production [J].
Bottino, A ;
Capannelli, G ;
Monticelli, O ;
Piaggio, P .
JOURNAL OF MEMBRANE SCIENCE, 2000, 166 (01) :23-29
[4]   Synthesis, Characterization, and Theoretical Insights of Green Chitosan Derivatives Presenting Enhanced Li+ Ionic Conductivity [J].
Cardoso, J. ;
Nava, D. ;
Garcia-Moran, P. ;
Hernandez-Sanchez, F. ;
Gomez, B. ;
Vazquez-Arenas, J. ;
Gonzalez, I. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (09) :4655-4665
[5]   Addressing the Interface Issues in All-Solid-State Bulk-Type Lithium Ion Battery via an All-Composite Approach [J].
Chen, Ru-Jun ;
Zhang, Yi-Bo ;
Liu, Ting ;
Xu, Bing-Qing ;
Lin, Yuan-Hua ;
Nan, Ce-Wen ;
Shen, Yang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9654-9661
[6]   Nano-tube TiO2 composite PVdF/LiPF6 solid membranes [J].
Chiang, CY ;
Reddy, MJ ;
Chu, PP .
SOLID STATE IONICS, 2004, 175 (1-4) :631-635
[7]   Complexation of poly(vinylidene fluoride):LiPF6 solid polymer electrolyte with enhanced ion conduction in 'wet' form [J].
Chiang, CY ;
Shen, YJ ;
Reddy, AJ ;
Chu, PP .
JOURNAL OF POWER SOURCES, 2003, 123 (02) :222-229
[8]   Poly(vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems [J].
Costa, C. M. ;
Gomez Ribelles, J. L. ;
Lanceros-Mendez, S. ;
Appetecchi, G. B. ;
Scrosati, B. .
JOURNAL OF POWER SOURCES, 2014, 245 :779-786
[9]   Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications [J].
Costa, Carlos M. ;
Silva, Maria M. ;
Lanceros-Mendez, S. .
RSC ADVANCES, 2013, 3 (29) :11404-11417
[10]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458