Pair of non-self-mappings and common fixed points

被引:28
作者
Gajic, Ljiljana
Rakocevic, Vladimir
机构
[1] Univ Nis, Fac Sci & Math, Dept Math, Nish 18000, Serbia
[2] Univ Novi Sad, Fac Sci, Inst Math, Novi Sad 21000, Serbia
关键词
Takahashi convex metric spaces; non-self-mapping; common fixed point; Banach space; Quasi-contraction;
D O I
10.1016/j.amc.2006.09.143
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study quasi-contraction type non-self-mappings on Takahashi convex metric spaces and common fixed point theorems for a pair of maps. Results generalizing and unifying fixed point theorems of Imdad and Kumar, Das and Naik, Jungck, 666, Ume, Khan and Pathak, and 666 are established. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:999 / 1006
页数:8
相关论文
共 16 条
[1]   FIXED-POINT THEOREMS FOR SET-VALUED MAPPINGS OF CONTRACTIVE TYPE [J].
ASSAD, NA ;
KIRK, WA .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (03) :553-562
[2]  
BERINDE V, 2004, MATH BALKANICA, V18, P85
[3]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[4]   Contractive type non-self mappings on metric spaces of hyperbolic type [J].
Ciric, LB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) :28-42
[5]   On some nonself mappings [J].
Ciric, LJB ;
Ume, JS ;
Khan, MS ;
Pathak, HK .
MATHEMATISCHE NACHRICHTEN, 2003, 251 :28-33
[6]  
Ciric LjB., 1998, B ACAD SERBE SCI ART, V23, P25
[7]   COMMON FIXED-POINT THEOREMS FOR COMMUTING MAPS ON A METRIC SPACE [J].
DAS, KM ;
NAIK, KV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (03) :369-373
[8]  
GAJIC L, 2000, NOVI SAD J MATH, V30, P41
[9]   Quasicontraction nonself-mappings on convex metric spaces and common fixed point theorems [J].
Gajic, Ljiljana ;
Rakocevic, Vladimir .
FIXED POINT THEORY AND APPLICATIONS, 2005, 2005 (03) :365-375
[10]  
Imdad M, 2003, COMPUT MATH APPL, V46, P919, DOI [10.1016/S0898-1221(03)90153-2, 10.1016/S0898-1221(03)00296-7]