Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers

被引:172
作者
Ajayi, Obafunso A. [1 ]
Ardelean, Jenny V. [1 ]
Shepard, Gabriella D. [2 ]
Wang, Jue [3 ]
Antony, Abhinandan [1 ]
Taniguchi, Takeshi [4 ]
Watanabe, Kenji [4 ]
Heinz, Tony F. [5 ,6 ]
Strauf, Stefan [2 ]
Zhu, X-Y [3 ]
Hone, James C. [1 ]
机构
[1] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
[2] Stevens Inst Technol, Dept Phys & Engn Phys, Hoboken, NJ 07030 USA
[3] Columbia Univ, Dept Chem, New York, NY 10027 USA
[4] Natl Inst Mat Sci, 1 1 Namiki, Tsukuba, Ibaraki, Japan
[5] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
transition metal dichalcogenides; photoluminescence; line width; GAAS QUANTUM-WELLS; EXCITON DYNAMICS; BORON-NITRIDE; MOS2; SEMICONDUCTOR; GRAPHENE; CONTACT; TRIONS; WS2;
D O I
10.1088/2053-1583/aa6aa1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Excitonic states in monolayer transition metal dichalcogenides (TMDCs) have been the subject of extensive recent interest. Their intrinsic properties can, however, be obscured due to the influence of inhomogeneity in the external environment. Here we report methods for fabricating high quality TMDC monolayers with narrow photoluminescence (PL) linewidth approaching the intrinsic limit. We find that encapsulation in hexagonal boron nitride (h-BN) sharply reduces the PL linewidth, and that passivation of the oxide substrate by an alkyl monolayer further decreases the linewidth and also minimizes the charged exciton (trion) peak. The combination of these sample preparation methods results in much reduced spatial variation in the PL emission, with a full-width-at-half-maximum as low as 1.7 meV. Analysis of the PL line shape yields a homogeneous width of 1.43 +/- 0.08 meV and inhomogeneous broadening of 1.1 +/- 0.3 meV.
引用
收藏
页数:6
相关论文
共 33 条
[1]  
Cadiz F, 2017, ARXIV170200323
[2]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[3]   General observation of n-type field-effect behaviour in organic semiconductors [J].
Chua, LL ;
Zaumseil, J ;
Chang, JF ;
Ou, ECW ;
Ho, PKH ;
Sirringhaus, H ;
Friend, RH .
NATURE, 2005, 434 (7030) :194-199
[4]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[5]   ENHANCED RADIATIVE RECOMBINATION OF FREE-EXCITONS IN GAAS QUANTUM-WELLS [J].
DEVEAUD, B ;
CLEROT, F ;
ROY, N ;
SATZKE, K ;
SERMAGE, B ;
KATZER, DS .
PHYSICAL REVIEW LETTERS, 1991, 67 (17) :2355-2358
[6]   Optical Coherence in Atomic-Monolayer Transition-Metal Dichalcogenides Limited by Electron-Phonon Interactions [J].
Dey, P. ;
Paul, J. ;
Wang, Z. ;
Stevens, C. E. ;
Liu, C. ;
Romero, A. H. ;
Shan, J. ;
Hilton, D. J. ;
Karaiskaj, D. .
PHYSICAL REVIEW LETTERS, 2016, 116 (12)
[7]   Tightly Bound Excitons in Monolayer WSe2 [J].
He, Keliang ;
Kumar, Nardeep ;
Zhao, Liang ;
Wang, Zefang ;
Mak, Kin Fai ;
Zhao, Hui ;
Shan, Jie .
PHYSICAL REVIEW LETTERS, 2014, 113 (02)
[8]   Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 [J].
Horzum, S. ;
Sahin, H. ;
Cahangirov, S. ;
Cudazzo, P. ;
Rubio, A. ;
Serin, T. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2013, 87 (12)
[9]   Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials [J].
Huang, Yuan ;
Sutter, Eli ;
Shi, Norman N. ;
Zheng, Jiabao ;
Yang, Tianzhong ;
Englund, Dirk ;
Gao, Hong-Jun ;
Sutter, Peter .
ACS NANO, 2015, 9 (11) :10612-10620
[10]   Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain [J].
Island, Joshua O. ;
Kuc, Agnieszka ;
Diependaal, Erik H. ;
Bratschitsch, Rudolf ;
van der Zant, Herre S. J. ;
Heine, Thomas ;
Castellanos-Gomez, Andres .
NANOSCALE, 2016, 8 (05) :2589-2593