Hierarchical Deep Convolutional Neural Networks for Multi-category Diagnosis of Gastrointestinal Disorders on Histopathological Images

被引:11
作者
Sali, Rasoul [1 ]
Adewole, Sodiq [1 ]
Ehsan, Lubaina [2 ]
Denson, Lee A. [4 ]
Kelly, Paul [5 ,6 ]
Amadi, Beatrice C. [6 ]
Holtz, Lori [7 ]
Ali, Syed Asad [8 ]
Moore, Sean R. [2 ]
Syed, Sana [2 ]
Brown, Donald E. [1 ,3 ]
机构
[1] Univ Virginia, Dept Syst & Informat Engn, Charlottesville, VA 22903 USA
[2] Univ Virginia, Sch Med, Dept Pediat, Charlottesville, VA 22908 USA
[3] Univ Virginia, Sch Data Sci, Charlottesville, VA 22903 USA
[4] Cincinnati Childrens Hosp Med Ctr, Div Gastroenterol Hepatol & Nutr, Cincinnati, OH 45229 USA
[5] Queen Mary Univ London, Blizard Inst, Barts & London Sch Med, London, England
[6] Univ Zambia, Sch Med, Trop Gastroenterol & Nutr Grp, Lusaka, Zambia
[7] Univ Washington, Sch Med, Dept Pediat, Seattle, WA 98195 USA
[8] Aga Khan Univ, Dept Pediat & Child Hlth, Karachi, Pakistan
来源
2020 8TH IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2020) | 2020年
基金
美国国家卫生研究院;
关键词
Hierarchical deep convolutional neural network; Gastrointestinal disorders; Multi-category diagnosis; Histopathological images; Coarse categories; Fine classes; CLASSIFICATION;
D O I
10.1109/ICHI48887.2020.9374332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional neural networks (CNNs) have been successful for a wide range of computer vision tasks including image classification. A specific area of application lies in digital pathology for pattern recognition in tissue-based diagnosis of gastrointestinal (GI) diseases. This domain can utilize CNNs to translate histopathological images into precise diagnostics. This is challenging since these complex biopsies are heterogeneous and require multiple levels of assessment. This is mainly due to structural similarities in different parts of the GI tract and shared features among different gut diseases. Addressing this problem with a flat model which assumes all classes (parts of the gut and their diseases) are equally difficult to distinguish leads to an inadequate assessment of each class. Since hierarchical model restricts classification error to each sub-class, it leads to a more informative model compared to a flat model. In this paper we propose to apply hierarchical classification of biopsy images from different parts of the GI tract and the receptive diseases within each. We embedded a class hierarchy into the plain VGGNet to take advantage of the hierarchical structure of its layers. The proposed model was evaluated using an independent set of image patches from 373 whole slide images. The results indicate that hierarchical model can achieve better results compared to the flat model for multi-category diagnosis of GI disorders using histopathological images.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 29 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]  
Campbell DI, 2003, J NUTR, V133, P1332
[3]   Epidemiology and Natural History of Eosinophilic Esophagitis [J].
Dellon, Evan S. ;
Hirano, Ikuo .
GASTROENTEROLOGY, 2018, 154 (02) :319-+
[4]   ClassView:: Hierarchical video shot classification, indexing, and accessing [J].
Fan, JP ;
Elmagarmid, AK ;
Zhu, XQ ;
Aref, WG ;
Wu, LD .
IEEE TRANSACTIONS ON MULTIMEDIA, 2004, 6 (01) :70-86
[5]   Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning [J].
Gomez-Valverde, Juan J. ;
Anton, Alfonso ;
Fatti, Gianluca ;
Liefers, Bart ;
Herranz, Alejandra ;
Santos, Andres ;
Sanchez, Clara, I ;
Ledesma-Carbay, Maria J. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (02) :892-913
[6]  
Ioffe S, 2015, Arxiv, DOI arXiv:1502.03167
[7]   Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound [J].
Ko, Su Yeon ;
Lee, Ji Hye ;
Yoon, Jung Hyun ;
Na, Hyesun ;
Hong, Eunhye ;
Han, Kyunghwa ;
Jung, Inkyung ;
Kim, Eun-Kyung ;
Moon, Hee Jung ;
Park, Vivian Y. ;
Lee, Eunjung ;
Kwak, Jin Young .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2019, 41 (04) :885-891
[8]  
Kowsari K., 2019, P FUT TECHN C, P750, DOI DOI 10.1007/978-3-030-32520-6_55
[9]   Hierarchical deep convolutional neural networks combine spectral and spatial information for highly accurate Raman-microscopy-based cytopathology [J].
Krauss, Sascha D. ;
Roy, Raphael ;
Yosef, Hesham K. ;
Lechtonen, Tatjana ;
El-Mashtoly, Samir F. ;
Gerwert, Klaus ;
Mosig, Axel .
JOURNAL OF BIOPHOTONICS, 2018, 11 (10)
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90