Shil'nikov heteroclinic orbits in a chaotic system

被引:10
作者
Sun, Feng-Yun [1 ]
机构
[1] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2007年 / 21卷 / 25期
关键词
heteroclinic orbit; Liu system; Shil'nikov theorem;
D O I
10.1142/S0217979207037788
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, a chaotic system which exhibits a chaotic attractor with only three equilibria for some parameters is considered. The existence of heteroclinic orbits of the Shil'nikov type in a chaotic system has been proved using the undetermined coefficient method. As a result, the Shil'nikov criterion guarantees that the system has Smale horseshoes. Moreover, the geometric structures of the attractor are determined by these heteroclinic orbits.
引用
收藏
页码:4429 / 4436
页数:8
相关论文
共 10 条
[1]  
Chen G., 1998, CHAOS ORDER METHODOL
[2]   A new chaotic attractor [J].
Liu, CX ;
Liu, T ;
Liu, L ;
Liu, K .
CHAOS SOLITONS & FRACTALS, 2004, 22 (05) :1031-1038
[3]  
LIU W, 2004, INT J BIFURCAT CHAOS, V14, P1507
[4]  
SHILNIKOV LP, 1970, MAT SBORNIK, V10, P91
[5]   SHILNIKOV THEOREM - A TUTORIAL [J].
SILVA, CP .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1993, 40 (10) :675-682
[6]   Existence of heteroclinic orbits of the Shil'nikov type in a 3D quadratic autonomous chaotic system [J].
Zheng, ZH ;
Chen, GR .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (01) :106-119
[7]   Circuitry implementation and synchronization of Chen's attractor [J].
Zhong, GQ ;
Tang, WKS .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (06) :1423-1427
[8]   Si'lnikov chaos in the generalized Lorenz canonical form of dynamical systems [J].
Zhou, TS ;
Chen, GR ;
Celikovsky, S .
NONLINEAR DYNAMICS, 2005, 39 (04) :319-334
[9]   Chen's attractor exists [J].
Zhou, TS ;
Tang, Y ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (09) :3167-3177
[10]   Constructing a new chaotic system based on the Silnikov criterion [J].
Zhou, TS ;
Chen, GR ;
Yang, QG .
CHAOS SOLITONS & FRACTALS, 2004, 19 (04) :985-993