Locally compact, locally countable spaces and random reals

被引:0
作者
Moore, JT [1 ]
机构
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
关键词
Kunen line; PEA; measure algebras; random reals; locally countable; cometrizable;
D O I
10.1016/j.topol.2003.10.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note I will present a proof that, assuming PFA, if R is a measure algebra then after forcing with R every uncountable locally compact locally countable cometrizable space contains an uncountable discrete set. The lemmas and techniques will be presented in a general form as they may be applicable to other problems. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:169 / 179
页数:11
相关论文
共 11 条
[1]  
Fremlin David H., 1989, HDB BOOLEAN ALGEBRA, V3, P877
[2]   NORMALITY IN X2 FOR COMPACT X [J].
GRUENHAGE, G ;
NYIKOS, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 340 (02) :563-586
[3]   2 MORE HEREDITARILY SEPARABLE NON-LINDELOF SPACES [J].
JUHASZ, I ;
KUNEN, K ;
RUDIN, ME .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1976, 28 (05) :998-1005
[4]   Katetov's problem [J].
Larson, P ;
Todorcevic, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (05) :1783-1791
[5]   RANDOM REALS AND SOUSLIN TREES [J].
LAVER, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 100 (03) :531-534
[7]   Random forcing and (S) and (L) [J].
Moore, JT .
TOPOLOGY AND ITS APPLICATIONS, 2003, 131 (02) :139-148
[8]  
MOORE JT, 2000, THESIS U TORONTO
[9]   Chain-condition methods in topology [J].
Todorcevic, S .
TOPOLOGY AND ITS APPLICATIONS, 2000, 101 (01) :45-82
[10]  
Todorcevic S., 1989, Partition problems in topology, volume 84 of Contemporary Mathematics