Maximum principles for time-fractional Caputo-Katugampola diffusion equations

被引:15
作者
Cao, Liang [1 ]
Kong, Hua [2 ]
Zeng, Sheng-Da [2 ,3 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[3] Jagiellonian Univ, Inst Comp Sci, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2017年 / 10卷 / 04期
基金
中国国家自然科学基金;
关键词
Caputo-Katugampola fractional operators; fractional diffusion equations; maximum principles; uniqueness; continuous dependence;
D O I
10.22436/jnsa.010.04.75
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Maximum and minimum principles for time-fractional Caputo-Katugampola diffusion operators are proposed in this paper. Several inequalities are proved at extreme points. Uniqueness and continuous dependence of solutions for fractional diffusion equations of initial-boundary value problems are considered. (C) 2017 All rights reserved.
引用
收藏
页码:2257 / 2267
页数:11
相关论文
共 29 条
[1]   Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :40-51
[2]   Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications [J].
Al-Refai, Mohammed ;
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (02) :483-498
[3]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[4]   Compositions of Hadamard-type fractional integration operators and the semigroup property [J].
Butzer, PL ;
Kilbas, AA ;
Trujillo, JJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 269 (02) :387-400
[5]  
Cao L., 2017, J COMPUT COMPLEX APP, V3, P68
[6]   Least-Squares Spectral Method for the solution of a fractional advection-dispersion equation [J].
Carella, Alfredo Raul ;
Dorao, Carlos Alberto .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 232 (01) :33-45
[7]   TIME-FRACTIONAL DIFFUSION EQUATION IN THE FRACTIONAL SOBOLEV SPACES [J].
Gorenflo, Rudolf ;
Luchko, Yuri ;
Yamamoto, Masahiro .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :799-820
[8]  
Katugampola UN, 2014, BULL MATH ANAL APPL, V6, P1
[9]  
Kilbas A A., 2006, North-Holland Mathematical Studies, Vvol 204
[10]   MAXIMUM PRINCIPLES FOR MULTI-TERM SPACE-TIME VARIABLE-ORDER FRACTIONAL DIFFUSION EQUATIONS AND THEIR APPLICATIONS [J].
Liu, Zhenhai ;
Zeng, Shengda ;
Bai, Yunru .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (01) :188-211