Sierpinski gasket as a Martin boundary I: Martin kernels - Dedicated to Professor Masatoshi Fukushima on the occasion of his 60th birthday

被引:26
作者
Denker, M
Sato, H
机构
[1] Univ Gottingen, Inst Math Stochast, D-37083 Gottingen, Germany
[2] Kyushu Univ, Grad Sch Math, Fukuoka 81281, Japan
关键词
Martin boundary; Sierpinski gasket; Markov chain;
D O I
10.1023/A:1011232724842
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Sierpinski gasket in N dimension is homeomorphic to the minimal Martin boundary of some canonical Markov chain. This provides a new class of examples for the boundary theory of Markov chains and the basis for a harmonic analysis on p.c.f. fractal structures.
引用
收藏
页码:211 / 232
页数:22
相关论文
共 16 条
[1]  
ANCONA A, 1988, LECT NOTES MATH, V1344, P1
[2]  
[Anonymous], 1969, RUSS MATH SURV+
[3]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623
[4]  
CARTIER P, 1972, S MATH, V9, P203
[5]  
CARTWRIGHT DI, 1991, J THEORET PROBAB, V4, P111
[6]  
DOOB JL, 1959, J MATH MECH, V8, P433
[7]  
DYNKIN EB, 1961, SOV MATH DOKL, V2, P399
[8]  
Goldstein S., 1987, RANDOM WALKS DIFFUSI
[9]  
GROMOV M, 1987, MATH SCI RES I PUBL, V9, P75
[10]   RANDOM-WALKS ON DISCRETE-GROUPS - BOUNDARY AND ENTROPY [J].
KAIMANOVICH, VA ;
VERSHIK, AM .
ANNALS OF PROBABILITY, 1983, 11 (03) :457-490