Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks

被引:42
作者
Bandi, Peter [1 ]
Balkenhol, Maschenka [1 ]
van Ginneken, Bram [2 ]
van der Laak, Jeroen [1 ]
Litjens, Geert [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Pathol, Med Ctr, Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, Nijmegen, Netherlands
关键词
Whole-slide images; Convolutional neural networks; Segmentation; Tissue; Deep learning; Computational pathology; VALIDATION;
D O I
10.7717/peerj.8242
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modern pathology diagnostics is being driven toward large scale digitization of microscopic tissue sections. A prerequisite for its safe implementation is the guarantee that all tissue present on a glass slide can also be found back in the digital image. Whole-slide scanners perform a tissue segmentation in a low resolution overview image to prevent inefficient high-resolution scanning of empty background areas. However, currently applied algorithms can fail in detecting all tissue regions. In this study, we developed convolutional neural networks to distinguish tissue from background. We collected 100 whole-slide images of 10 tissue samples-staining categories from five medical centers for development and testing. Additionally, eightmore images of eight unfamiliar categories were collected for testing only. We compared our fully-convolutional neural networks to three traditional methods on a range of resolution levels using Dice score and sensitivity. We also tested whether a single neural network can perform equivalently to multiple networks, each specialized in a single resolution. Overall, our solutions outperformed the traditional methods on all the tested resolutions. The resolution-agnostic network achieved average Dice scores between 0.97 and 0.98 across the tested resolution levels, only 0.0069 less than the resolution-specific networks. Finally, its excellent generalization performance was demonstrated by achieving averages of 0.98 Dice score and 0.97 sensitivity on the eight unfamiliar images. A future study should test this network prospectively.
引用
收藏
页数:22
相关论文
共 30 条
[1]  
[Anonymous], 2017, arXiv preprint arXiv:1705.01908
[2]  
Azevedo Tosta Thaina A., 2017, Informatics in Medicine Unlocked, V9, P35, DOI 10.1016/j.imu.2017.05.009
[3]   From Detection of Individual Metastases to Classification of Lymph Node Status at the Patient Level: The CAMELYON17 Challenge [J].
Bandi, Peter ;
Geessink, Oscar ;
Manson, Quirine ;
van Dijk, Marcory ;
Balkenhol, Maschenka ;
Hermsen, Meyke ;
Bejnordi, Babak Ehteshami ;
Lee, Byungjae ;
Paeng, Kyunghyun ;
Zhong, Aoxiao ;
Li, Quanzheng ;
Zanjani, Farhad Ghazvinian ;
Zinger, Svitlana ;
Fukuta, Keisuke ;
Komura, Daisuke ;
Ovtcharov, Vlado ;
Cheng, Shenghua ;
Zeng, Shaoqun ;
Thagaard, Jeppe ;
Dahl, Anders B. ;
Lin, Huangjing ;
Chen, Hao ;
Jacobsson, Ludwig ;
Hedlund, Martin ;
Cetin, Melih ;
Halici, Eren ;
Jackson, Hunter ;
Chen, Richard ;
Both, Fabian ;
Franke, Joerg ;
Kusters-Vandevelde, Heidi ;
Vreuls, Willem ;
Bult, Peter ;
van Ginneken, Bram ;
van der Laak, Jeroen ;
Litjens, Geert .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :550-560
[4]  
Bándi P, 2017, I S BIOMED IMAGING, P591, DOI 10.1109/ISBI.2017.7950590
[5]   Using deep convolutional neural networks to identify and classify tumor-associated stroma in diagnostic breast biopsies [J].
Bejnordi, Babak Ehteshami ;
Mullooly, Maeve ;
Pfeiffer, Ruth M. ;
Fan, Shaoqi ;
Vacek, Pamela M. ;
Weaver, Donald L. ;
Herschorn, Sally ;
Brinton, Louise A. ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Beck, Andrew H. ;
Gierach, Gretchen L. ;
van der Laak, Jeroen A. W. M. ;
Sherman, Mark E. .
MODERN PATHOLOGY, 2018, 31 (10) :1502-1512
[6]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[7]   Foreground Extraction for Histopathological Whole Slide Imaging [J].
Bug, Daniel ;
Feuerhake, Friedrich ;
Merhof, Dorit .
BILDVERARBEITUNG FUR DIE MEDIZIN 2015: ALGORITHMEN - SYSTEME - ANWENDUNGEN, 2015, :419-424
[8]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[9]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[10]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302