Universal displacements in linear elasticity

被引:13
作者
Yavari, Arash [1 ,2 ]
Goodbrake, Christian [3 ]
Goriely, Alain [3 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[3] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Universal deformation; Universal displacement; Linear elasticity; Anisotropy classes; SYMMETRIES; NUMBER; PROOF;
D O I
10.1016/j.jmps.2019.103782
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In nonlinear elasticity, universal deformations are the deformations that exist for arbitrary energy functions and suitable tractions at the boundaries. Here, we discuss the equivalent problem for linear elasticity. We characterize the universal displacements of linear elasticity: those displacement fields that can be maintained by applying boundary tractions in the absence of body forces for any linear elastic solid in a given anisotropy class. We show that the universal displacements for compressible isotropic linear elastic solids are constant-divergence harmonic vector fields. We note that any divergence-free displacement field is a universal displacement for incompressible linear elastic solids. Further, we characterize the universal displacement fields for all the anisotropy classes, namely triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic, and cubic solids. As expected, universal displacements explicitly depend on the anisotropy class: the smaller the symmetry group, the smaller the space of universal displacements. In the extreme case of triclinic material where the symmetry group only contains the identity and minus identity, the only possible universal displacements are linear homogeneous functions. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 25 条
  • [1] [Anonymous], 2004, NONLINEAR FIELD THEO
  • [2] Carlson DE, 1971, J ELASTICITY, V1, P145
  • [3] Carlson DE, 1972, J ELASTICITY, V2, P129
  • [4] A new proof that the number of linear elastic symmetries is eight
    Chadwick, P
    Vianello, M
    Cowin, SC
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (11) : 2471 - 2492
  • [5] Cowin S.C., 2007, Tissue Mechanics
  • [6] Cowin S.C., 1995, APPL MECH REV, V48, P247, DOI [10.1115/1.3005102, DOI 10.1115/1.3005102]
  • [7] Curtin M.E., 1972, HDB PHYS, VVla/2
  • [8] Generic separating sets for three-dimensional elasticity tensors
    Desmorat, R.
    Auffray, N.
    Desmorat, B.
    Kolev, B.
    Olive, M.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2226):
  • [9] Ericksen JL., 1954, Z. Angew. Math. Phys, V5, P466, DOI [DOI 10.1007/BF01601214, 10.1007/BF01601214]
  • [10] Ericksen JL., 1955, Stud. Appl. Math, V34, P126