Co9S8 nanoparticles anchored on nitrogen and sulfur dual-doped carbon nanosheets as highly efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions

被引:138
作者
Wu, Can [1 ]
Zhang, Yuhang [2 ]
Dong, Duo [1 ]
Xie, Haiming [2 ]
Li, Jinghong [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Analyt Methods & Instrumentat, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Dept Chem, Beijing 100084, Peoples R China
[2] Northeast Normal Univ, Dept Chem, Natl & Local United Engn Lab Power Battery, Changchun 130024, Jilin, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
GRAPHENE OXIDE; PERFORMANCE; HYDROGEN; CO; PHOSPHIDE; CATALYSTS; NANOSTRUCTURES; COMPOSITE; CATHODE; ROUTE;
D O I
10.1039/c7nr03950f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To promote the practical application of electrochemical energy storage and conversion systems, nonprecious electrocatalysts of low cost and with highly efficient performance in oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are highly desired. In this work, a cubic sodium chloride (NaCl) crystal-templated strategy is proposed for coupling Co9S8 nanoparticles to nitrogen-and sulfur-doped carbon nanosheets (Co9S8/N,S-CNS) by facile pyrolysis. The nitrogen and sulfur dual-doped carbon nanosheets can effectively prevent the aggregation of Co9S8 nanoparticles and greatly improve the conductivity of the hybrid structure. The well-dispersed Co9S8 nanoparticles could provide more active sites. When evaluated as a bifunctional electrocatalyst, an overpotential of 350 mV could yield 10 mA cm(-2) current density for OER and a high onset potential around 0.90 V vs. RHE was obtained with a four-electron pathway for ORR, which is comparable to that of a Pt/C catalyst. The remarkable electrochemical performance can be attributed to the synergistic catalytic effect of Co9S8 nanoparticles and the N,S-doped carbon nanosheets. Considering the simplicity, low cost and scalability of the approach, the strategy presented here can be extendable to the preparation of other nanoparticles/carbon hybrid nanosheets, which may potentially be applied in the fields of high-performance supercapacitors, lithium-ion batteries, catalysts, sensors, adsorbents and so on.
引用
收藏
页码:12432 / 12440
页数:9
相关论文
共 45 条
[1]   Prussian blue as a single precursor for synthesis of Fe/Fe3C encapsulated N-doped graphitic nanostructures as bi-functional catalysts [J].
Barman, Barun Kumar ;
Nanda, Karuna Kar .
GREEN CHEMISTRY, 2016, 18 (02) :427-432
[2]   Cobalt Sulfide Embedded in Porous Nitrogen-doped Carbon as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions [J].
Cao, Xuecheng ;
Zheng, Xiangjun ;
Tian, Jinghua ;
Jin, Chao ;
Ke, Ke ;
Yang, Ruizhi .
ELECTROCHIMICA ACTA, 2016, 191 :776-783
[3]   Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].
Chen, Binling ;
Li, Rong ;
Ma, Guiping ;
Gou, Xinglong ;
Zhu, Yanqiu ;
Xia, Yongde .
NANOSCALE, 2015, 7 (48) :20674-20684
[4]   Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes [J].
Chen, Kuiyong ;
Huang, Xiaobin ;
Wan, Chaoying ;
Liu, Hong .
CHEMICAL COMMUNICATIONS, 2015, 51 (37) :7891-7894
[5]   Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].
Cheng, Fangyi ;
Shen, Jian ;
Peng, Bo ;
Pan, Yuede ;
Tao, Zhanliang ;
Chen, Jun .
NATURE CHEMISTRY, 2011, 3 (01) :79-84
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   Toward N-Doped Graphene via Solvothermal Synthesis [J].
Deng, Dehui ;
Pan, Xiulian ;
Yu, Liang ;
Cui, Yi ;
Jiang, Yeping ;
Qi, Jing ;
Li, Wei-Xue ;
Fu, Qiang ;
Ma, Xucun ;
Xue, Qikun ;
Sun, Gongquan ;
Bao, Xinhe .
CHEMISTRY OF MATERIALS, 2011, 23 (05) :1188-1193
[8]   Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis [J].
Dou, Shuo ;
Tao, Li ;
Huo, Jia ;
Wang, Shuangyin ;
Dai, Liming .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (04) :1320-1326
[9]   Nitrogen-Doped Carbon Nanotube Aerogels for High-Performance ORR Catalysts [J].
Du, Ran ;
Zhang, Na ;
Zhu, Jinghan ;
Wang, Ying ;
Xu, Chenyu ;
Hu, Yue ;
Mao, Nannan ;
Xu, Hua ;
Duan, Wenjie ;
Zhuang, Lin ;
Qu, Liangti ;
Hou, Yanglong ;
Zhang, Jin .
SMALL, 2015, 11 (32) :3903-3908
[10]   M3C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions [J].
Fan, Xiujun ;
Peng, Zhiwei ;
Ye, Ruquan ;
Zhou, Haiqing ;
Guo, Xia .
ACS NANO, 2015, 9 (07) :7407-7418