Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities

被引:37
作者
Messaoudi, Salim A. [1 ]
Al-Smail, Jamal H. [1 ]
Talahmeh, Ala A. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, POB 5046, Dhahran 31261, Saudi Arabia
[2] Birzeit Univ, Dept Math, West Bank, Palestine
关键词
Wave equation; Variable exponent; Decay; LINEAR HYPERBOLIC-EQUATIONS; BLOW-UP; GLOBAL NONEXISTENCE; ASYMPTOTIC-BEHAVIOR; PARABOLIC EQUATIONS; EXISTENCE; T)-LAPLACIAN; P(X; SPACES;
D O I
10.1016/j.camwa.2018.07.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following nonlinear wave equation with variable exponents: u(tt) - div(vertical bar del u vertical bar(r(.)-2)del u) + vertical bar u(t)vertical bar(m(.)-2)u(t) = 0. By using a lemma by Komornik, we prove the decay estimates for the solution under suitable assumptions on the variable exponents m, r and the initial data. We also give two numerical applications to illustrate our theoretical results. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1863 / 1875
页数:13
相关论文
共 38 条
[1]  
[Anonymous], 1994, Exact controllability and stabilization. The multiplier method
[2]  
[Anonymous], J DIFFERENTIAL EQUAT
[3]   Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Ferreira, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 93 :62-77
[4]   Blow-up of solutions to parabolic equations with nonstandard growth conditions [J].
Antontsev, S. ;
Shmarev, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2633-2645
[5]  
Antontsev S., 2015, ATLANTIS STUDIES DIF, V4
[6]  
Antontsev S, 2005, ADV DIFFERENTIAL EQU, V10, P1053
[7]   WAVE EQUATION WITH p(x,t)-LAPLACIAN AND DAMPING TERM: EXISTENCE AND BLOW-UP [J].
Antontsev, Stanislav .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04) :503-525
[8]   Wave equation with p(x, t)-Laplacian and damping term: Blow-up of solutions [J].
Antontsev, Stanislav .
COMPTES RENDUS MECANIQUE, 2011, 339 (12) :751-755
[9]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[10]  
Benaissa A., 2006, J INEQUAL PURE APPL, V7