Solution of multi-dimensional radiative transfer problems on parallel computers

被引:0
作者
Kanschat, G [1 ]
机构
[1] Univ Heidelberg, Inst Angew Math, D-69120 Heidelberg, Germany
来源
PARALLEL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS | 2000年 / 120卷
关键词
radiative transfer; neutron transport; linear Boltzmann equation; finite elements; adaptive methods; ordinate parallelization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes the whole process of solving monochromatic multidimensional radiative transfer problems. First, the mathematical model is given with some remarks on coefficient functions in astrophysics and mathematical analysis. Then, a suitable discretization method is presented together with the concept of residual based a posteriori error estimates and adaptive grid refinement in 2D and 3D. The resulting linear system has the eigenvalue structure to be solved by the GMRES or bicgstab algorithm. Ordinate parallelization is shown to be well compatible with locally refined grids. It's parallel efficiency is analyzed and demonstrated with examples.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 21 条
  • [1] ASADZADEH M, 1986, THESIS CHALMERS TU G
  • [2] AUER LH, 1994, ASTRON ASTROPHYS, V285, P675
  • [3] Baschek B., 1988, Advances in Space Research, V8, P315, DOI 10.1016/0273-1177(88)90422-X
  • [4] BECKER R, 1995, ENUMATH 95
  • [5] BECKER R, 1995, THESIS U HEIDELBERG
  • [6] Becker R., 1996, E W J NUMER MATH, V4, P237
  • [7] DITTMANN OJ, 1995, THESIS U HEIDELBERG
  • [8] CONVERGENCE OF A FULLY DISCRETE SCHEME FOR TWO-DIMENSIONAL NEUTRON-TRANSPORT
    JOHNSON, C
    PITKARANTA, J
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (05) : 951 - 966
  • [9] FINITE-ELEMENT METHODS FOR LINEAR HYPERBOLIC PROBLEMS
    JOHNSON, C
    NAVERT, U
    PITKARANTA, J
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) : 285 - 312
  • [10] KANSCHAT G, 1996, THESIS U HEIDELBERG