Improving object proposals with top-down cues

被引:1
|
作者
Li, Wei [1 ]
Li, Hongliang [1 ]
Luo, Bing [1 ]
Shi, Hengcan [1 ]
Wu, Qingbo [1 ]
Ngan, King Ngi [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu, Peoples R China
[2] Chinese Univ Hong Kong, Dept Elect Engn, Shatin, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Object proposals; Object detection; Object recognition;
D O I
10.1016/j.image.2017.04.006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The generation of object proposals plays an important role in object detection. Most existing methods produce object proposals by using bottom-up cues, such as closed contour or superpixel. In this paper, we propose a novel method to improve the ranking of object proposals by combining bottom-up cues with top-down information of objectivity. Firstly, we utilize the bottom-up method to generate initial object proposals of the given test image. Then we retrieve its top-k similar images from training images set. Considering both appearance and spatial similarity between initial object proposals and the ground truth bounding boxes of these top-k similar images, we obtain the top-down guided scores of initial object proposals. Finally, the refined score of each initial object proposal is modeled as a fusion of the bottom-up score and the top-down score. Experiments show that our method achieves better performance compared with the state-of-art on the Pascal VOC2007 dataset.
引用
收藏
页码:20 / 27
页数:8
相关论文
共 50 条
  • [31] Densely nested top-down flows for salient object detection
    Chaowei Fang
    Haibin Tian
    Dingwen Zhang
    Qiang Zhang
    Jungong Han
    Junwei Han
    Science China Information Sciences, 2022, 65
  • [32] Top-Down Guided Fusion Network for Object Contour Detection
    Ma W.
    Gong C.
    Xu S.
    Zhang X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2021, 33 (06): : 855 - 863
  • [33] Densely nested top-down flows for salient object detection
    Chaowei FANG
    Haibin TIAN
    Dingwen ZHANG
    Qiang ZHANG
    Jungong HAN
    Junwei HAN
    ScienceChina(InformationSciences), 2022, 65 (08) : 57 - 70
  • [34] HierFlat: flattened hierarchies for improving top-down hierarchical classification
    Naik A.
    Rangwala H.
    International Journal of Data Science and Analytics, 2017, 4 (3) : 191 - 208
  • [35] Improving Top-Down Sequence Coverage with Targeted Fragment Matching
    Robey, Matthew T.
    Durbin, Kenneth R.
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2024, 35 (12) : 3296 - 3300
  • [36] Inconsistent Node Flattening for Improving Top-down Hierarchical Classification
    Naik, Azad
    Rangwala, Huzefa
    PROCEEDINGS OF 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS, (DSAA 2016), 2016, : 379 - 388
  • [37] The top-down universe
    Minkel, JR
    NEW SCIENTIST, 2002, 175 (2355) : 28 - 31
  • [38] Top-down proteomics
    Roberts, David S.
    Loo, Joseph A.
    Tsybin, Yury O.
    Liu, Xiaowen
    Wu, Si
    Chamot-Rooke, Julia
    Agar, Jeffrey N.
    Pasa-Tolic, Ljiljana
    Smith, Lloyd M.
    Ge, Ying
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [39] Top-down savings
    Uzych, L
    HASTINGS CENTER REPORT, 1996, 26 (05) : 3 - 3
  • [40] Top-down research
    Greenberg, Charles B.
    CHEMICAL & ENGINEERING NEWS, 2006, 84 (45) : 3 - 4