Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning

被引:158
作者
Evans, Jack D. [1 ]
Couder, Francois-Xavier [1 ]
机构
[1] PSL Res Univ, Chim ParisTech, CNRS, Inst Rech Chim Paris, F-75005 Paris, France
关键词
FORCE-FIELDS; ALUMINOPHOSPHATES; AUXETICITY; DERIVATION; DISCOVERY; SILICAS; SETS;
D O I
10.1021/acs.chemmater.7b02532
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show here that machine learning is a powerful new tool for predicting the elastic response of zeolites. We built our machine learning approach relying on geometric features only, which are related to local geometry, structure, and porosity of a zeolite, to predict bulk and shear moduli of zeolites with an accuracy exceeding that of force field approaches. The development of this model has illustrated clear correlations between characteristic features of a zeolite and elastic moduli, providing exceptional insight into the mechanics of zeolitic frameworks. Finally, we employ this methodology to predict the elastic response of 590 448 hypothetical zeolites, and the results of this massive database provide clear evidence of stability trends in porous materials.
引用
收藏
页码:7833 / 7839
页数:7
相关论文
共 61 条
[1]   Beware of R2: Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models [J].
Alexander, D. L. J. ;
Tropsha, A. ;
Winkler, David A. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (07) :1316-1322
[2]   Density functional theory study of silica zeolite structures: Stabilities and mechanical properties of SOD, LTA, CHA, MOR, and MFI [J].
Astala, R ;
Auerbach, SM ;
Monson, PA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (26) :9208-9215
[3]  
Auerbach S. M., 2003, Handbook of Zeolite Science and Technology
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[5]   Auxeticity of cubic materials [J].
Branka, A. C. ;
Heyes, D. M. ;
Wojciechowski, K. W. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (09) :2063-2071
[6]   Drug design by machine learning: support vector machines for pharmaceutical data analysis [J].
Burbidge, R ;
Trotter, M ;
Buxton, B ;
Holden, S .
COMPUTERS & CHEMISTRY, 2001, 26 (01) :5-14
[7]  
Caruana R., 2006, P 23 INT C MACH LEAR, P161, DOI DOI 10.1145/1143844.1143865
[8]   Simulating the properties of small pore silica zeolites using interatomic potentials [J].
Combariza, Aldo F. ;
Gomez, Diego A. ;
Sastre, German .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (01) :114-127
[9]   Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility [J].
Coudert, Francois-Xavier .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (38) :16012-16018
[10]   Computational Screening of All Stoichiometric Inorganic Materials [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Jackson, Adam J. ;
Morris, Andrew ;
Frost, Jarvist M. ;
Skelton, Jonathan M. ;
Walsh, Aron .
CHEM, 2016, 1 (04) :617-627