Digital Twin Networks: A Survey

被引:477
作者
Wu, Yiwen [1 ]
Zhang, Ke [1 ]
Zhang, Yan [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
来源
IEEE INTERNET OF THINGS JOURNAL | 2021年 / 8卷 / 18期
基金
中国国家自然科学基金;
关键词
Digital twin; Data models; Computational modeling; Predictive models; Market research; Smart cities; Mirrors; Digital twin (DT); digital twin network (DTN); DT modeling;
D O I
10.1109/JIOT.2021.3079510
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Digital twin network (DTN) is an emerging network that utilizes digital twin (DT) technology to create the virtual twins of physical objects. DTN realizes co-evolution between physical and virtual spaces through DT modeling, communication, computing, data processing technologies. In this article, we present a comprehensive survey of DTN to explore the potentiality of DT. First, we elaborate key features and definitions of DTN. Next, the key technologies and the technical challenges in DTN are discussed. Furthermore, we depict the typical application scenarios, such as manufacturing, aviation, healthcare, 6G networks, intelligent transportation systems, and urban intelligence in smart cities. Finally, the new trends and open research issues related to DTN are pointed out.
引用
收藏
页码:13789 / 13804
页数:16
相关论文
共 41 条
[1]   Liberalization of Digital Twins of IoT-Enabled Home Appliances via Blockchains and Absolute Ownership Rights [J].
Altun, Cankal ;
Tavli, Bulent ;
Yanikomeroglu, Halim .
IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (12) :65-71
[2]  
[Anonymous], 2020, DIGITAL TWIN COMPRES
[3]  
[Anonymous], 2012, MODELICA A UNIFIED O
[4]  
[Anonymous], 2013, 1301 AFST TR US AIR
[5]   A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications [J].
Barricelli, Barbara Rita ;
Casiraghi, Elena ;
Fogli, Daniela .
IEEE ACCESS, 2019, 7 :167653-167671
[6]  
Bielefeldt B, 2016, PROC ASME CONF SMART
[7]  
Boschert S., 2018, TOOLS METHODS COMPET, V2018, P7, DOI DOI 10.17560/ATP.V60I10.2371
[8]   Deep Reinforcement Learning for Stochastic Computation Offloading in Digital Twin Networks [J].
Dai, Yueyue ;
Zhang, Ke ;
Maharjan, Sabita ;
Zhang, Yan .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) :4968-4977
[9]   What should 6G be? [J].
Dang, Shuping ;
Amin, Osama ;
Shihada, Basem ;
Alouini, Mohamed-Slim .
NATURE ELECTRONICS, 2020, 3 (01) :20-29
[10]   Emergency Management of Urban Rail Transportation Based on Parallel Systems [J].
Dong, Hairong ;
Ning, Bin ;
Chen, Yao ;
Sun, Xubin ;
Wen, Ding ;
Hu, Yuling ;
Ouyang, Renhai .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2013, 14 (02) :627-636