A Robust Model Predictive Control Strategy for Trajectory Tracking of Omni-directional Mobile Robots
被引:48
作者:
Wang, Dongliang
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R China
Wang, Dongliang
[1
]
Wei, Wu
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R China
Wei, Wu
[1
]
Yeboah, Yao
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R China
Yeboah, Yao
[2
]
Li, Yanjie
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R China
Li, Yanjie
[1
]
论文数: 引用数:
h-index:
机构:
Gao, Yong
[1
]
机构:
[1] South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
Trajectory tracking control;
Model predictive control;
Quadratic programming;
Delayed neural network;
Omni-directional mobile robot;
NEURAL-NETWORK;
OPTIMIZATION;
D O I:
10.1007/s10846-019-01083-1
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper proposes a robust model predictive control (MPC) strategy for the trajectory tracking control of a four-mecanum-wheeled omni-directional mobile robot (FM-OMR) under various constraints. The method proposed in this paper can solve various constraints while implementing trajectory tracking of the FM-OMR. Firstly, a kinematics model with constraint relationship of the FM-OMR is established. On the basis of the kinematics model, the kinematics trajectory tracking error model of the FM-OMR is further formulated. Then, it is transformed into a constrained quadratic programming(QP) problem by the method of MPC. In addition, aiming at the speed deficiencies of conventional neural networks in QP solving, a delayed neural network (DNN) is applied to solve the optimal solution of the QP problem, and compared with the Lagrange programming neural network (LPNN) to show the rapidity of the DNN. Finally, two simulation cases considering bounded random disturbance are provided to verify the robustness and effectiveness of the proposed method. Theoretical analysis and simulation results show that the control strategy is effective and feasible.
机构:
Islamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran
Hashemi, Ehsan
Jadidi, Maani Ghaffari
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Fac Elect Comp & IT Engn, Mechatron Res Lab, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran
Jadidi, Maani Ghaffari
Jadidi, Navid Ghaffari
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Fac Elect Comp & IT Engn, Mechatron Res Lab, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran
机构:
Islamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran
Hashemi, Ehsan
Jadidi, Maani Ghaffari
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Fac Elect Comp & IT Engn, Mechatron Res Lab, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran
Jadidi, Maani Ghaffari
Jadidi, Navid Ghaffari
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Fac Elect Comp & IT Engn, Mechatron Res Lab, Qazvin Branch, Barajin, Qazvin, IranIslamic Azad Univ, Fac Ind & Mech Engn, Qazvin Branch, Barajin, Qazvin, Iran