The complementary exponential power lifetime model

被引:20
|
作者
Barriga, Gladys D. C. [3 ]
Louzada-Neto, Franscisco [1 ]
Cancho, Vicente G. [2 ]
机构
[1] Univ Fed Sao Carlos, DEs, BR-13560 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, ICMC, BR-05508 Sao Paulo, Brazil
[3] Univ Estadual Paulista, FEB, Sao Paulo, Brazil
关键词
Exponential power distribution; Bathtub shaped hazard function; Unimodal hazard function; Lifetime data; WEIBULL DISTRIBUTION; BATHTUB; SHAPE;
D O I
10.1016/j.csda.2010.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:1250 / 1259
页数:10
相关论文
共 50 条
  • [21] A New Four-Parameter Moment Exponential Model with Applications to Lifetime Data
    Ahmadini, Abdullah Ali H.
    Hassan, Amal S.
    Mohamed, Rokaya E.
    Alshqaq, Shokrya S.
    Nagy, Heba F.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (01): : 131 - 146
  • [22] Fuzzy testing model for the lifetime performance of products under consideration with exponential distribution
    Chen, Kuen-Suan
    Chang, Tsang-Chuan
    ANNALS OF OPERATIONS RESEARCH, 2022, 312 (01) : 87 - 98
  • [23] Fuzzy testing model for the lifetime performance of products under consideration with exponential distribution
    Kuen-Suan Chen
    Tsang-Chuan Chang
    Annals of Operations Research, 2022, 312 : 87 - 98
  • [24] Estimation of lifetime parameters of the modified extended exponential distribution with application to a mechanical model
    Mahmoud, M. A. W.
    Ramadan, Dina A.
    Mansour, M. M. M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (12) : 7005 - 7018
  • [25] GM(1, 1) power model with power exponential law coincidence
    Wang, Zheng-Xin
    Kongzhi yu Juece/Control and Decision, 2013, 28 (12): : 1843 - 1848
  • [26] Model Selection for Exponential Power Mixture Regression Models
    Jiang, Yunlu
    Liu, Jiangchuan
    Zou, Hang
    Huang, Xiaowen
    ENTROPY, 2024, 26 (05)
  • [27] Power Cycling Modeling and Lifetime Evaluation of SiC Power MOSFET Module Using a Modified Physical Lifetime Model
    Cheng, Hsien-Chie
    Syu, Ji-Yuan
    Wang, He-Hong
    Liu, Yan-Cheng
    Kao, Kuo-Shu
    Chang, Tao-Chih
    IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2024, 24 (01) : 142 - 153
  • [28] The Poisson-exponential lifetime distribution
    Cancho, Vicente G.
    Louzada-Neto, Franscisco
    Barriga, Gladys D. C.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (01) : 677 - 686
  • [29] The exponential-Weibull lifetime distribution
    Cordeiro, Gauss M.
    Ortega, Edwin M. M.
    Lemonte, Artur J.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (12) : 2592 - 2606
  • [30] New Lifetime Model for Advanced Power Semiconductor Interconnects
    Schiffmacher, Alexander
    Bashiti, Ahmad
    Strahringer, David
    Wilde, Juergen
    Kempiak, Carsten
    Lindemann, Andreas
    Rudzki, Jacek
    Stroebel-Maier, Henning
    IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 473 - 477