The complementary exponential power lifetime model

被引:20
作者
Barriga, Gladys D. C. [3 ]
Louzada-Neto, Franscisco [1 ]
Cancho, Vicente G. [2 ]
机构
[1] Univ Fed Sao Carlos, DEs, BR-13560 Sao Carlos, SP, Brazil
[2] Univ Sao Paulo, ICMC, BR-05508 Sao Paulo, Brazil
[3] Univ Estadual Paulista, FEB, Sao Paulo, Brazil
关键词
Exponential power distribution; Bathtub shaped hazard function; Unimodal hazard function; Lifetime data; WEIBULL DISTRIBUTION; BATHTUB; SHAPE;
D O I
10.1016/j.csda.2010.09.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we propose a new lifetime distribution which can handle bathtub-shaped unimodal increasing and decreasing hazard rate functions The model has three parameters and generalizes the exponential power distribution proposed by Smith and Bain (1975) with the inclusion of an additional shape parameter The maximum likelihood estimation procedure is discussed A small-scale simulation study examines the performance of the likelihood ratio statistics under small and moderate sized samples Three real datasets Illustrate the methodology (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:1250 / 1259
页数:10
相关论文
共 31 条
[1]  
AARSET MV, 1985, SCAND J STAT, V12, P55
[2]   HOW TO IDENTIFY A BATHTUB HAZARD RATE [J].
AARSET, MV .
IEEE TRANSACTIONS ON RELIABILITY, 1987, 36 (01) :106-108
[3]  
Barlow R.E., 1975, Reliability and Fault Tree Analysis, P451
[4]   A generalized modified Weibull distribution for lifetime modeling [J].
Carrasco, Jalmar M. F. ;
Ortega, Edwin M. M. ;
Cordeiro, Gauss M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 53 (02) :450-462
[5]   Statistical inference about the shape parameter of the exponential power distribution [J].
Chen, ZM .
STATISTICAL PAPERS, 1999, 40 (04) :459-468
[6]   A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function [J].
Chen, ZM .
STATISTICS & PROBABILITY LETTERS, 2000, 49 (02) :155-161
[7]  
Cox D.R., 1974, THEORETICAL STAT
[8]  
Davison A.C. Hinkley., 1997, BOOTSTRAP METHODS TH
[9]   A small sample comparison of maximum likelihood, moments and L-moments methods for the asymmetric exponential power distribution [J].
Delicado, P. ;
Goria, M. N. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) :1661-1673