Finite determinacy of matrices over local rings. Tangent modules to the miniversal deformation for R-linear group actions

被引:1
作者
Belitskii, Genrich [1 ]
Kerner, Dmitry [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
基金
以色列科学基金会;
关键词
NON-ISOLATED SINGULARITIES; NONISOLATED SINGULARITIES; VANISHING TOPOLOGY; SYMMETRIC-MATRICES; SOLVABLE-GROUPS; FREE DIVISORS; MAP-GERMS; FAMILIES; EQUIVALENCE; GENERICITY;
D O I
10.1016/j.jpaa.2018.06.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider matrices with entries in a local ring, Mat(mxn)(R). Fix a group action, G (sic) Mat(mxn)(R), and a subset of allowed deformations, Sigma subset of Mat(mxn)(R). The standard question in Singularity Theory is the finite-(Sigma, G)-determinacy of matrices. Finite determinacy implies algebraizability and is equivalent to a stronger notion: stable algebraizability. In our previous work this determinacy question was reduced to the study of the tangent spaces T-(Sigma,T-A), T-(GA,T-A), and their quotient, the tangent module to the miniversal deformation, T-(Sigma,G,A)(1) = T-(Sigma,T-A)/T(G (A,A)) . In particular, the order of determinacy is controlled by the annihilator of this tangent module, ann(T-(Sigma,G,A)(1)). In this work we study this tangent module for the group action GL(m, R) x GL(n, R) (sic) Mat(mxn)(R) and various natural subgroups of it. We obtain ready-to-use criteria of determinacy for deformations of (embedded) modules, (skew-)symmetric forms, filtered modules, filtered morphisms of filtered modules, chains of modules and others. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1288 / 1321
页数:34
相关论文
共 56 条
  • [1] Ahmed I., ARXIV171011189
  • [2] [Anonymous], 2016, THESIS
  • [3] [Anonymous], 1973, ANN SCI COLE NORM SU, DOI DOI 10.24033/ASENS.1258
  • [4] [Anonymous], ENCY MATH SCI
  • [5] [Anonymous], 2006, Integral closure of ideals, rings, and modules
  • [6] LINEAR-OPERATORS ON MATRICES - THE INVARIANCE OF RANK-KAPPA MATRICES
    BEASLEY, LB
    LAFFEY, TJ
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 133 : 175 - 184
  • [7] Belitski G., ARXIV160406247
  • [8] Belitski G., 2016, C R MATH REP ACAD SC, V38, P113
  • [9] Belitski G., UNPUB
  • [10] ON FAMILIES OF SYMMETRIC MATRICES
    Bruce, J. W.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (02) : 335 - 360