Model Driven Software Reconfiguration by Exploiting Grammar Based Genetic Programming

被引:1
作者
Munante, Denisse [1 ,2 ]
Kifetew, Fitsum Meshesha [2 ]
Gorronogoitia, Jesus [3 ]
Schaniel, Ronnie [4 ]
Perini, Anna [2 ]
Susi, Angelo [2 ]
机构
[1] Ecole Super Technol Ind Avancees, Bidart, France
[2] Fdn Bruno Kessler, Trento, Italy
[3] ATOS, Madrid, Spain
[4] Univ Appl Sci & Arts Northwestern Switzerland, Windisch, Switzerland
来源
2018 IEEE 8TH INTERNATIONAL MODEL-DRIVEN REQUIREMENTS ENGINEERING WORKSHOP (MODRE 2018) | 2018年
基金
欧盟地平线“2020”;
关键词
Genetic programming; Feature model; models@runtime;
D O I
10.1109/MoDRE.2018.00009
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dynamic reconfiguration of software systems can be achieved by exploiting variability models of such systems, combined with mechanisms for selecting and instantiating the appropriate system configuration. We developed a model-driven approach for dynamic software reconfiguration, which uses a component profile-oriented feature model for representing different configurations of a software system, and a grammar based genetic programming tool that, at run-time, automatically generates an optimal system configuration. The resulting feature configuration is transformed to a target format such as JSON, SQL or other specification that allows us to instantiate the new system configuration. In this paper we focus on the run-time reasoning and propagation aspect, and discuss our experience on applying the approach to a use case.
引用
收藏
页码:21 / 25
页数:5
相关论文
共 16 条
  • [1] Benavides D, 2005, LECT NOTES COMPUT SC, V3520, P491
  • [2] Software Engineering for Self-Adaptive Systems: A Research Roadmap
    Cheng, Betty H. C.
    de Lemos, Rogerio
    Giese, Holger
    Inverardi, Paola
    Magee, Jeff
    Andersson, Jesper
    Becker, Basil
    Bencomo, Nelly
    Brun, Yuriy
    Cukic, Bojan
    Serugendo, Giovanna Di Marzo
    Dustdar, Schahram
    Finkelstein, Anthony
    Gacek, Cristina
    Geihs, Kurt
    Grassi, Vincenzo
    Karsai, Gabor
    Kienle, Holger M.
    Kramer, Jeff
    Litoiu, Marin
    Malek, Sam
    Mirandola, Raffaela
    Mueller, Hausi A.
    Park, Sooyong
    Shaw, Mary
    Tichy, Matthias
    Tivoli, Massimo
    Weyns, Danny
    Whittle, Jon
    [J]. SOFTWARE ENGINEERING FOR SELF-ADAPTIVE SYSTEMS, 2009, 5525 : 1 - +
  • [3] A journey to highly dynamic, self-adaptive service-based applications
    Di Nitto, Elisabetta
    Ghezzi, Carlo
    Metzger, Andreas
    Papazoglou, Mike
    Pohl, Klaus
    [J]. AUTOMATED SOFTWARE ENGINEERING, 2008, 15 (3-4) : 313 - 341
  • [4] Giese Holger, 2017, SelfAware Computing Systems, P17
  • [5] A genetic algorithm for optimized feature selection with resource constraints in software product lines
    Guo, Jianmei
    White, Jules
    Wang, Guangxin
    Li, Jian
    Wang, Yinglin
    [J]. JOURNAL OF SYSTEMS AND SOFTWARE, 2011, 84 (12) : 2208 - 2221
  • [6] Hilari M. O., 2018, RE 2018 26 IEEE INT
  • [7] Kang K., 1990, TECH REP CMUSEI 90 T
  • [8] The vision of autonomic computing
    Kephart, JO
    Chess, DM
    [J]. COMPUTER, 2003, 36 (01) : 41 - +
  • [9] Grammar Based Genetic Programming for Software Configuration Problem
    Kifetew, Fitsum Meshesha
    Munante, Denisse
    Gorronogoitia, Jesus
    Siena, Alberto
    Susi, Angelo
    Perini, Anna
    [J]. SEARCH BASED SOFTWARE ENGINEERING, SSBSE 2017, 2017, 10452 : 130 - 136
  • [10] Generating valid grammar-based test inputs by means of genetic programming and annotated grammars
    Kifetew, Fitsum Meshesha
    Tiella, Roberto
    Tonella, Paolo
    [J]. EMPIRICAL SOFTWARE ENGINEERING, 2017, 22 (02) : 928 - 961