How to compare instrumental variable and conventional regression analyses using negative controls and bias plots

被引:39
作者
Davies, Neil M. [1 ,2 ]
Thomas, Kyla H. [1 ]
Taylor, Amy E. [1 ,3 ]
Taylor, Gemma M. J. [1 ,2 ,3 ]
Martin, Richard M. [1 ,2 ]
Munafo, Marcus R. [1 ,3 ]
Windmeijer, Frank [1 ,4 ]
机构
[1] Univ Bristol, Integrat Epidemiol Unit, MRC, Bristol BS8 2BN, Avon, England
[2] Univ Bristol, Sch Social & Community Med, Bristol, Avon, England
[3] Univ Bristol, UK Ctr Tobacco & Alcohol Studies, Bristol, Avon, England
[4] Univ Bristol, Dept Econ, Bristol, Avon, England
基金
英国医学研究理事会; 英国经济与社会研究理事会;
关键词
Instrumental variables; negative controls; pharmacoepidemiology; causal inference; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; ATYPICAL ANTIPSYCHOTIC MEDICATIONS; POTENTIAL INSTRUMENT; CAUSAL INFERENCE; BINARY OUTCOMES; ELDERLY USERS; IDENTIFICATION; DEATH; RISK; EPIDEMIOLOGISTS;
D O I
10.1093/ije/dyx014
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
There is increasing interest in the use of instrumental variable analysis to overcome unmeasured confounding in observational pharmacoepidemiological studies. This is partly because instrumental variable analyses are potentially less biased than conventional regression analyses. However, instrumental variable analyses are less precise, and regulators and clinicians find it difficult to interpret conflicting evidence from instrumental variable compared with conventional regression analyses. In this paper, we describe three techniques to assess which approach (instrumental variable versus conventional regression analyses) is least biased. These techniques are negative control outcomes, negative control populations and tests of covariate balance. We illustrate these methods using an analysis of the effects of smoking cessation therapies (varenicline) prescribed in primary care.
引用
收藏
页码:2067 / 2077
页数:11
相关论文
共 30 条
[1]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[2]   Instrumental variables and the search for identification: From supply and demand to natural experiments [J].
Angrist, JD ;
Krueger, AB .
JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04) :69-85
[3]  
[Anonymous], BMJ BRIT MED J
[4]   Instrumental variable methods for causal inference [J].
Baiocchi, Michael ;
Cheng, Jing ;
Small, Dylan S. .
STATISTICS IN MEDICINE, 2014, 33 (13) :2297-2340
[5]  
Brookhart M Alan, 2007, Int J Biostat, V3, P14
[6]   Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable [J].
Brookhart, MA ;
Wang, PS ;
Solomon, DH ;
Schneeweiss, S .
EPIDEMIOLOGY, 2006, 17 (03) :268-275
[7]   Instrumental Variable Estimators for Binary Outcomes [J].
Clarke, Paul S. ;
Windmeijer, Frank .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1638-1652
[8]   Identification of causal effects on binary outcomes using structural mean models [J].
Clarke, Paul S. ;
Windmeijer, Frank .
BIOSTATISTICS, 2010, 11 (04) :756-770
[9]   An Even Clearer Portrait of Bias in Observational Studies? [J].
Davies, Neil M. .
EPIDEMIOLOGY, 2015, 26 (04) :505-508
[10]   Physicians' prescribing preferences were a potential instrument for patients' actual prescriptions of antidepressants [J].
Davies, Neil M. ;
Gunnell, David ;
Thomas, Kyla H. ;
Metcalfe, Chris ;
Windmeijer, Frank ;
Martin, Richard M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2013, 66 (12) :1386-1396