Clay dispersion and aspect ratios in polymer-clay nanocomposites

被引:18
作者
Vermogen, Alexandre [1 ]
Masenelli-Varlot, Karine
Vigier, Gerard
Sixou, Bruno
Thollet, Gilbert
Duchet-Rumeau, Jannick
机构
[1] INSA lyon, MATEIS, CNRS, UMR 5510, F-69621 Villeurbanne, France
[2] INSA lyon, LMM, IMP, UMR 5627, F-69621 Villeurbanne, France
关键词
nanocomposite; clay; exfoliation; dispersion; particle size distribution; TEM; SAXS; Wet-STEM;
D O I
10.1166/jnn.2007.802
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
It has clearly been shown in the literature that the properties achieved by polymer clay nanocomposites are often related to their structures and to the states of dispersion of the silicate platelets in the polymer matrices. Unfortunately, up to date most techniques used in a standard procedure do not allow a correct interpretation of polymer-clay nanocomposite structure and dispersion. In a recent work, we proposed an image analysis procedure (I.A.R) based on TEM/OM observations to characterize the clay dispersion in polymer clay nanocomposites. The I.A.R allows a very fine description of the nanocomposites microstructure. Nevertheless this analysis method shows some limits like the representativity of the sample analyzed volume. The purpose of this work is to discuss about the accuracy of the parameters extracted from the I.A.R We propose SAXS experimental developments for evaluating the thickness distribution of the clay tactoids. The good agreement between the results of the two techniques confirms the validity of the I.A.R methodology. Moreover, other experiments were performed in order to understand the abnormally low platelet lengths and aspect ratios determined from TEM micrographs. Wet-STEM observations revealed that clay platelets were not broken during the extrusion process. And, low platelet lengths and aspect ratios were shown to originate from the preparation of the ultramicrotomed sections and from TEM projection effects induced by the clay platelet wavy shape.
引用
收藏
页码:3160 / 3171
页数:12
相关论文
共 42 条
[1]   Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials [J].
Alexandre, Michael ;
Dubois, Philippe .
Materials Science and Engineering: R: Reports, 2000, 28 (1-2) :1-63
[2]  
[Anonymous], GEN THEORY
[3]   3D Hierarchical orientation in polymer-clay nanocomposite films [J].
Bafna, A ;
Beaucage, G ;
Mirabella, F ;
Mehta, S .
POLYMER, 2003, 44 (04) :1103-1115
[4]   Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase [J].
Bogner, A ;
Thollet, G ;
Basset, D ;
Jouneau, PH ;
Gauthier, C .
ULTRAMICROSCOPY, 2005, 104 (3-4) :290-301
[5]   Solvent-based nanocomposite coatings I.: Dispersion of organophilic montmorillonite in organic solvents [J].
Burgentzlé D ;
Duchet, J ;
Gérard, JF ;
Jupin, A ;
Fillon, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 278 (01) :26-39
[6]   Comparison of nanocomposites based on nylon 6 and nylon 66 [J].
Chavarria, F ;
Paul, DR .
POLYMER, 2004, 45 (25) :8501-8515
[7]  
DEGRANGE JM, 2004, P 11 EUR C COMP MAT
[8]   Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites [J].
Dennis, HR ;
Hunter, DL ;
Chang, D ;
Kim, S ;
White, JL ;
Cho, JW ;
Paul, DR .
POLYMER, 2001, 42 (23) :9513-9522
[9]   Assessing organo-clay dispersion in polymer nanocomposites [J].
Eckel, DF ;
Balogh, MP ;
Fasulo, PD ;
Rodgers, WR .
JOURNAL OF APPLIED POLYMER SCIENCE, 2004, 93 (03) :1110-1117
[10]   Modeling properties of nylon 6/clay nanocomposites using composite theories [J].
Fornes, TD ;
Paul, DR .
POLYMER, 2003, 44 (17) :4993-5013