Novel automated PD detection system using aspirin pattern with EEG signals

被引:27
|
作者
Barua, Prabal Datta [1 ,2 ]
Dogan, Sengul [3 ]
Tuncer, Turker [3 ]
Baygin, Mehmet [4 ]
Acharya, U. Rajendra [5 ,6 ,7 ]
机构
[1] Univ Southern Queensland, Sch Management & Enterprise, Toowoomba, Qld, Australia
[2] Univ Technol Sydney, Fac Engn & Informat Technol, Sydney, NSW, Australia
[3] Firat Univ, Dept Digital Forens Engn, Coll Technol, Elazig, Turkey
[4] Ardahan Univ, Dept Comp Engn, Coll Engn, Elazig, Turkey
[5] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
[6] SUSS Univ, Sch Sci & Technol, Dept Biomed Engn, Singapore, Singapore
[7] Asia Univ, Dept Biomed Informat & Med Engn, Taichung, Taiwan
关键词
Aspirin pattern; Neighborhood component analysis; Maximum absolute pooling; PD detection; EEG signal Classification; CLASSIFICATION; DIAGNOSIS;
D O I
10.1016/j.compbiomed.2021.104841
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background and objective: Parkinson's disease (PD) is one of the most common diseases worldwide which reduces quality of life of patients and their family members. The electroencephalogram (EEG) signals coupled with various advanced machine-learning algorithms have been widely used to detect PD automatically. In this paper, we propose a novel aspirin pattern to detect PD accurately using EEG signals. Method: In this research, the feature generation ability of a chemical graph is investigated. Therefore, this work presents a new graph-based aspirin model for automated PD detection using EEG signals. The proposed method consists of (i) multilevel feature generation phase involving new aspirin pattern, statistical moments, and maximum absolute pooling (MAP), (ii) selection of most discriminative features using neighborhood component analysis (NCA), and (iii) classification using k nearest neighbor (kNN) for automated detection of PD and (iv) iterative majority voting. Results: A public dataset has been used to develop the proposed model. Two cases are created, and these cases consisted of two classes. Leave one subject out (LOSO) validation have been used to calculate robust results. Our proposal achieved 93.57% and 95.48% classification accuracies for Case 1 and Case 2 respectively. Conclusion: Our developed automated PD model is accurate and equipped to be tested with more diverse EEG datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Lattice 123 pattern for automated Alzheimer's detection using EEG signal
    Dogan, Sengul
    Barua, Prabal Datta
    Baygin, Mehmet
    Tuncer, Turker
    Tan, Ru-San
    Ciaccio, Edward J.
    Fujita, Hamido
    Devi, Aruna
    Acharya, U. Rajendra
    COGNITIVE NEURODYNAMICS, 2024, 18 (5) : 2503 - 2519
  • [32] Novel Imaging Approach for Mental Stress Detection Using EEG Signals
    Mane, Swaymprabha Alias Megha
    Shinde, Arundhati A.
    PROCEEDINGS OF ACADEMIA-INDUSTRY CONSORTIUM FOR DATA SCIENCE (AICDS 2020), 2022, 1411 : 25 - 36
  • [33] Automated accurate emotion classification using Clefia pattern-based features with EEG signals
    Dogan, Abdullah
    Barua, Prabal Datta
    Baygin, Mehmet
    Tuncer, Turker
    Dogan, Sengul
    Yaman, Orhan
    Dogru, Ali Hikmet
    Acharya, Rajendra U.
    INTERNATIONAL JOURNAL OF HEALTHCARE MANAGEMENT, 2024, 17 (01) : 32 - 45
  • [34] Deep Convolutional Neural Network for Automated Detection of Mind Wandering using EEG Signals
    Hosseini, Seyedroohollah
    Guo, Xuan
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 314 - 319
  • [35] An automated epileptic seizure detection using optimized neural network from EEG signals
    Chanu, Maibam Mangalleibi
    Singh, Ngangbam Herojit
    Thongam, Khelchandra
    EXPERT SYSTEMS, 2023, 40 (06)
  • [36] APPLICATION OF S-TRANSFORM FOR AUTOMATED DETECTION OF VIGILANCE LEVEL USING EEG SIGNALS
    Upadhyay, R.
    Padhy, P. K.
    Kankar, P. K.
    JOURNAL OF BIOLOGICAL SYSTEMS, 2016, 24 (01) : 1 - 27
  • [37] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Aslan, Zulfikar
    Akin, Mehmet
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (01) : 83 - 96
  • [38] APPLICATION OF EMPIRICAL MODE DECOMPOSITION (EMD) FOR AUTOMATED DETECTION OF EPILEPSY USING EEG SIGNALS
    Martis, Roshan Joy
    Acharya, U. Rajendra
    Tan, Jen Hong
    Petznick, Andrea
    Yanti, Ratna
    Chua, Chua Kuang
    Ng, E. Y. K.
    Tong, Louis
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2012, 22 (06)
  • [39] Locating Ictal Activities over Human Scalp with Automated Detection using EEG signals
    Swami, Piyush
    Gandhi, Tapan
    Panigrahi, Bijaya K.
    Bhatia, Manvir
    Anand, Snch
    2016 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2016, : 606 - 610
  • [40] A deep learning approach in automated detection of schizophrenia using scalogram images of EEG signals
    Zülfikar Aslan
    Mehmet Akin
    Physical and Engineering Sciences in Medicine, 2022, 45 : 83 - 96