New insights into Approximate Bayesian Computation

被引:40
作者
Biau, Gerard [1 ]
Cerou, Frederic [2 ,3 ]
Guyader, Arnaud [4 ,5 ]
机构
[1] Univ Paris 06, Sorbonne Univ, F-75005 Paris, France
[2] INRIA Rennes Bretagne Atlantique, F-35042 Rennes, France
[3] IRMAR, F-35042 Rennes, France
[4] IRMAR, INRIA Rennes Bretagne Atantique, F-35043 Rennes, France
[5] Univ Rennes 2, F-35043 Rennes, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2015年 / 51卷 / 01期
关键词
Approximate Bayesian Computation; Nonparametric estimation; Conditional density estimation; Nearest neighbor methods; Mathematical statistics; DENSITY-FUNCTION; MONTE-CARLO; CONVERGENCE;
D O I
10.1214/13-AIHP590
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Approximate Bayesian Computation (ABC for short) is a family of computational techniques which offer an almost automated solution in situations where evaluation of the posterior likelihood is computationally prohibitive, or whenever suitable likelihoods are not available. In the present paper, we analyze the procedure from the point of view of k-nearest neighbor theory and explore the statistical properties of its outputs. We discuss in particular some asymptotic features of the genuine conditional density estimate associated with ABC, which is an interesting hybrid between a k-nearest neighbor and a kernel method.
引用
收藏
页码:376 / 403
页数:28
相关论文
共 55 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]  
[Anonymous], 1975, Lecture Notes in Math, DOI DOI 10.1007/BFB0081986
[3]  
[Anonymous], 2004, TECHNICAL REPORT
[4]  
[Anonymous], STAT APPL GENETICS M
[5]   Bandwidth selection for kernel conditional density estimation [J].
Bashtannyk, DM ;
Hyndman, RJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 36 (03) :279-298
[6]  
Beaumont MA, 2002, GENETICS, V162, P2025
[7]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990
[8]  
Biau G, 2010, J MACH LEARN RES, V11, P687
[9]   Approximate Bayesian Computation: A Nonparametric Perspective [J].
Blum, Michael G. B. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) :1178-1187
[10]   VARIABLE KERNEL ESTIMATES OF MULTIVARIATE DENSITIES [J].
BREIMAN, L ;
MEISEL, W ;
PURCELL, E .
TECHNOMETRICS, 1977, 19 (02) :135-144