Data-driven closures for stochastic dynamical systems

被引:23
作者
Brennan, Catherine [1 ]
Venturi, Daniele [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
关键词
Reduced-order stochastic modeling; Mori-Zwanzig formulation; Nonlinear dynamics; Liouville equation;
D O I
10.1016/j.jcp.2018.06.038
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We develop a new data-driven closure approximation method to compute the statistical properties of quantities of interest in high-dimensional stochastic dynamical systems. The proposed framework relies on estimating system-dependent conditional expectations from sample paths or experimental data, and then using such estimates to compute data-driven solutions to exact probability density function (PDF) equations. We also address the important question of whether enough useful data is being injected into the exact PDF equation for the purpose of computing an accurate numerical solution. Numerical examples are presented and discussed for prototype nonlinear dynamical systems and models of systems biology evolving from random initial states. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:281 / 298
页数:18
相关论文
共 39 条
[1]  
[Anonymous], APPL DYNAMICAL SYSTE
[2]  
[Anonymous], P R SOC A
[3]  
[Anonymous], Probability, Random Variables and Stochastic Processes
[4]  
[Anonymous], 2001, STAT INFERENCE
[5]  
[Anonymous], 2014, P ROY SOC A-MATH PHY
[6]   Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth [J].
Benzekry, Sebastien ;
Lamont, Clare ;
Beheshti, Afshin ;
Tracz, Amanda ;
Ebos, John M. L. ;
Hlatky, Lynn ;
Hahnfeldt, Philip .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[7]   The Magnus expansion and some of its applications [J].
Blanes, S. ;
Casas, F. ;
Oteo, J. A. ;
Ros, J. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 470 (5-6) :151-238
[8]   KERNEL DENSITY ESTIMATION VIA DIFFUSION [J].
Botev, Z. I. ;
Grotowski, J. F. ;
Kroese, D. P. .
ANNALS OF STATISTICS, 2010, 38 (05) :2916-2957
[9]   ADAPTIVE DISCONTINUOUS GALERKIN METHOD FOR RESPONSE-EXCITATION PDF EQUATIONS [J].
Cho, H. ;
Venturi, D. ;
Karniadakis, G. E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) :B890-B911
[10]   Optimal prediction and the Mori-Zwanzig representation of irreversible processes [J].
Chorin, AJ ;
Hald, OH ;
Kupferman, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :2968-2973