Genome-wide identification of xyloglucan endotransglucosylase/hydrolase gene family members in peanut and their expression profiles during seed germination

被引:15
作者
Zhu, Jieqiong [1 ,2 ]
Tang, Guiying [2 ]
Xu, Pingli [2 ]
Li, Guowei [1 ,2 ]
Ma, Changle [1 ]
Li, Pengxiang [1 ,2 ]
Jiang, Chunyu [1 ,2 ]
Shan, Lei [1 ,2 ]
Wan, Shubo [1 ,2 ]
机构
[1] Shandong Normal Univ, Coll Life Sci, Jinan, Peoples R China
[2] Shandong Acad Agr Sci, Bio Tech Res Ctr, Shandong Prov Key Lab Crop Genet Improvement, Jinan, Peoples R China
基金
国家重点研发计划;
关键词
Peanut (Arachis hypogaea L.); xyloglucan endotransglycosidase/hydrolase (XTH); Bioinformatics; Expression profile; Seed germination; ENDOTRANSGLYCOSYLASE GENE; ENDO-TRANSGLYCOSYLASES; ARABIDOPSIS; EVOLUTION; DUPLICATION; GIBBERELLIN; ENDOSPERM; DORMANCY; GROWTH; METABOLISM;
D O I
10.7717/peerj.13428
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Seed germination marks the beginning of a new plant life cycle. Improving the germination rate of seeds and the consistency of seedling emergence in the field could improve crop yields. Many genes are involved in the regulation of seed germination. Our previous study found that some peanut XTHs (xyloglucan endotransglucosylases/hydrolases) were expressed at higher levels at the newly germinated stage. However, studies of the XTH gene family in peanut have not been reported. In this study, a total of 58 AhXTH genes were identified in the peanut genome. Phylogenetic analysis showed that these AhXTHs, along with 33 AtXTHs from Arabidopsis and 61 GmXTHs from soybean, were classified into three subgroups: the I/II, IIIA and IIIB subclades. All AhXTH genes were unevenly distributed on the 18 peanut chromosomes, with the exception of chr. 07 and 17, and they had relatively conserved exon-intron patterns, most with three to four introns. Through chromosomal distribution pattern and synteny analysis, it was found that the AhXTH family experienced many replication events, including 42 pairs of segmental duplications and 23 pairs of tandem duplications, during genome evolution. Conserved motif analysis indicated that their encoded proteins contained the conserved ExDxE domain and N-linked glycosylation sites and displayed the conserved secondary structural loops 1-3 in members of the same group. Expression profile analysis of freshly harvested seeds, dried seeds, and newly germinated seeds using transcriptome data revealed that 26 AhXTH genes, which account for 45% of the gene family, had relatively higher expression levels at the seed germination stage, implying the important roles of AhXTHs in regulating seed germination. The results of quantitative real-time PCR also confirmed that some AhXTHs were upregulated during seed germination. The results of GUS histochemical staining showed that AhXTH4 was mainly expressed in germinated seeds and etiolated seedlings and had higher expression levels in elongated hypocotyls. AhXTH4 was also verified to play a crucial role in the cell elongation of hypocotyls during seed germination.
引用
收藏
页数:29
相关论文
共 61 条
[1]   Structural evidence for the evolution of xyloglucanase activity from xyloglucan endo-transglycosylases:: Biological implications for cell wall metabolism [J].
Baumann, Martin J. ;
Eklof, Jens M. ;
Michel, Gurvan ;
Kallas, Asa M. ;
Teeri, Tuula T. ;
Czjzek, Mirjam ;
Brumer, Harry, III .
PLANT CELL, 2007, 19 (06) :1947-1963
[2]   Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator [J].
Becnel, Jaime ;
Natarajan, Mukil ;
Kipp, Alex ;
Braam, Janet .
PLANT MOLECULAR BIOLOGY, 2006, 61 (03) :451-467
[3]   The genome sequence of segmental allotetraploid peanut Arachis hypogaea [J].
Bertioli, David J. ;
Jenkins, Jerry ;
Clevenger, Josh ;
Dudchenko, Olga ;
Gao, Dongying ;
Seijo, Guillermo ;
Leal-Bertioli, Soraya C. M. ;
Ren, Longhui ;
Farmer, Andrew D. ;
Pandey, Manish K. ;
Samoluk, Sergio S. ;
Abernathy, Brian ;
Agarwal, Gaurav ;
Ballen-Taborda, Carolina ;
Cameron, Connor ;
Campbell, Jacqueline ;
Chavarro, Carolina ;
Chitikineni, Annapurna ;
Chu, Ye ;
Dash, Sudhansu ;
El Baidouri, Moaine ;
Guo, Baozhu ;
Huang, Wei ;
Do Kim, Kyung ;
Korani, Walid ;
Lanciano, Sophie ;
Lui, Christopher G. ;
Mirouze, Marie ;
Moretzsohn, Marcio C. ;
Pham, Melanie ;
Shin, Jin Hee ;
Shirasawa, Kenta ;
Sinharoy, Senjuti ;
Sreedasyam, Avinash ;
Weeks, Nathan T. ;
Zhang, Xinyou ;
Zheng, Zheng ;
Sun, Ziqi ;
Froenicke, Lutz ;
Aiden, Erez L. ;
Michelmore, Richard ;
Varshney, Rajeev K. ;
Holbrook, C. Corley ;
Cannon, Ethalinda K. S. ;
Scheffler, Brian E. ;
Grimwood, Jane ;
Ozias-Akins, Peggy ;
Cannon, Steven B. ;
Jackson, Scott A. ;
Schmutz, Jeremy .
NATURE GENETICS, 2019, 51 (05) :877-+
[4]   Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events [J].
Bowers, JE ;
Chapman, BA ;
Rong, JK ;
Paterson, AH .
NATURE, 2003, 422 (6930) :433-438
[5]   Co- and/or post-translational modifications are critical for TCH4 XET activity [J].
Campbell, P ;
Braam, J .
PLANT JOURNAL, 1998, 15 (04) :553-561
[6]   Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions [J].
Campbell, P ;
Braam, J .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :361-366
[7]   The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana [J].
Cannon S.B. ;
Mitra A. ;
Baumgarten A. ;
Young N.D. ;
May G. .
BMC Plant Biology, 4 (1)
[8]   Characterization of a tomato xyloglucan endotransglycosylase gene that is down-regulated by auxin in etiolated hypocotyls [J].
Catalá, C ;
Rose, JKC ;
York, WS ;
Albersheim, P ;
Darvill, AG ;
Bennett, AB .
PLANT PHYSIOLOGY, 2001, 127 (03) :1180-1192
[9]   XTHs from Fragaria vesca: genomic structure and transcriptomic analysis in ripening fruit and other tissues [J].
Cecilia Opazo, Maria ;
Lizana, Rodrigo ;
Stappung, Yazmina ;
Davis, Thomas M. ;
Herrera, Raul ;
Alejandra Moya-Leon, Maria .
BMC GENOMICS, 2017, 18
[10]   A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination [J].
Chen, F ;
Nonogaki, H ;
Bradford, KJ .
JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (367) :215-223