On a p(x)-biharmonic problem with Navier boundary condition

被引:0
作者
Zhou, Zheng [1 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math Sci, Xiamen, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2018年
关键词
p(x)-biharmonic; Critical points theory; Variational methods; MULTIPLE SOLUTIONS; EXISTENCE; P(X)-LAPLACIAN;
D O I
10.1186/s13661-018-1071-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a p(x)-biharmonic equation with Navier boundary condition {Delta(2)(p(x))u + a(x)vertical bar u vertical bar(p(x)-2)u = lambda f(x, u) + mu g(x,u) in Omega, u = Delta u = 0 on partial derivative Omega. Here Omega subset of R-N (N >= 1) is a bounded domain with smooth boundary partial derivative Omega, Delta(2)(p(x))( )u is a p(x)-biharmonic operator with p(x) is an element of subset of ((Omega) over bar, p(x) > 1. lambda, mu, is an element of R, a is an element of L-infinity(Omega) such that inf(x is an element of Omega) a(x) = a(-) > 0. By variational methods, we establish the results of existence and non-existence of solutions.( )
引用
收藏
页数:14
相关论文
共 29 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]  
Afouzi G.A., 2015, ELECTRON J DIFFER EQ, V2015, P158
[3]  
[Anonymous], 1997, Minimax theorems
[4]   On the spectrum of a fourth order elliptic equation with variable exponent [J].
Ayoujil, A. ;
El Amrouss, A. R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4916-4926
[5]   Existence results for a Neumann problem involving the p(x)-Laplacian with discontinuous nonlinearities [J].
Barletta, Giuseppina ;
Chinni, Antonia ;
O'Regan, Donal .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 27 :312-325
[6]   On a p(.)-biharmonic problem with no-flux boundary condition [J].
Boureanu, Maria-Magdalena ;
Radulescu, Vicentiu ;
Repovs, Dusan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (09) :2505-2515
[7]   Multiple solutions for a Neumann problem involving the p(x)-Laplacian [J].
Cammaroto, F. ;
Chinni, A. ;
Di Bella, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4486-4492
[8]   MULTIPLE SOLUTIONS FOR A NEUMANN-TYPE DIFFERENTIAL INCLUSION PROBLEM INVOLVING THE p(.)-LAPLACIAN [J].
Chinni, Antonia ;
Livrea, Roberto .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2012, 5 (04) :753-764
[9]  
Danet CP., 2014, ELECTRON J QUAL THEO, V2014, P31
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+