Mining cancer gene expression databases for latent information on intronic microRNAs

被引:4
|
作者
Monterisi, Simona [1 ]
D'Ario, Giovanni [1 ]
Dama, Elisa [1 ,2 ]
Rotmensz, Nicole [2 ]
Confalonieri, Stefano [1 ,3 ]
Tordonato, Chiara [1 ]
Troglio, Flavia [1 ]
Bertalot, Giovanni [1 ]
Maisonneuve, Patrick [2 ]
Viale, Giuseppe [4 ,5 ]
Nicassio, Francesco [1 ,3 ,6 ]
Vecchi, Manuela [1 ,3 ]
Di Fiore, Pier Paolo [1 ,3 ,7 ]
Bianchi, Fabrizio [1 ]
机构
[1] European Inst Oncol, Dept Expt Oncol, Program Mol Med, I-20141 Milan, Italy
[2] European Inst Oncol, Div Epidemiol & Biostat, I-20141 Milan, Italy
[3] FIRC Inst Mol Oncol Fdn, IFOM, Milan, Italy
[4] European Inst Oncol, Div Pathol, I-20141 Milan, Italy
[5] Univ Milan, Sch Med, Milan, Italy
[6] Ist Italian Tecnol, Ctr Genom Sci IIT SEMM, Milan, Italy
[7] Univ Milan, Dept Sci Salute, Milan, Italy
基金
欧洲研究理事会;
关键词
MicroRNA; Cancer; Gene expression; Breast cancer; LARGE-T-ANTIGEN; BREAST-CANCER; HISTOLOGIC GRADE; HOST GENES; CELL; PROGNOSIS; CLASSIFICATION; IDENTIFICATION; PROFILES; SUBTYPES;
D O I
10.1016/j.molonc.2014.10.001
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Around 50% of all human microRNAs reside within introns of coding genes and are usually co-transcribed. Gene expression datasets, therefore, should contain a wealth of miRNA-relevant latent information, exploitable for many basic and translational research aims. The present study was undertaken to investigate this possibility. We developed an in silico approach to identify intronic-miRNAs relevant to breast cancer, using public gene expression datasets. This led to the identification of a miRNA signature for aggressive breast cancer, and to the characterization of novel roles of selected miRNAs in cancer-related biological phenotypes. Unexpectedly, in a number of cases, expression regulation of the intronic-miRNA was more relevant than the expression of their host gene. These results provide a proof of principle for the validity of our intronic miRNA mining strategy, which we envision can be applied not only to cancer research, but also to other biological and biomedical fields. (C) 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 487
页数:15
相关论文
共 50 条
  • [21] Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression
    Sun, Yulin
    Ji, Fubo
    Kumar, Mia R.
    Zheng, Xin
    Xiao, Yi
    Liu, Niya
    Shi, Jiong
    Wong, Linda
    Forgues, Marshonna
    Qin, Lun-Xiu
    Tang, Zhao-You
    Zhao, Xiaohang
    Wang, Xin Wei
    Ji, Junfang
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2017, 13 (11): : 1438 - 1449
  • [22] Cancer gene expression profiles associated with clinical outcomes to chemotherapy treatments
    Borisov, Nicolas
    Sorokin, Maxim
    Tkachev, Victor
    Garazha, Andrew
    Buzdin, Anton
    BMC MEDICAL GENOMICS, 2020, 13 (Suppl 8)
  • [23] A 19-Gene expression signature as a predictor of survival in colorectal cancer
    Aziz, Nurul Ainin Abdul
    Mokhtar, Norfilza M.
    Harun, Roslan
    Mollah, Md Manir Hossain
    Rose, Isa Mohamed
    Sagap, Ismail
    Tamil, Azmi Mohd
    Ngah, Wan Zurinah Wan
    Jamal, Rahman
    BMC MEDICAL GENOMICS, 2016, 9
  • [24] Comparative Study on Data Mining Techniques Applied to Breast Cancer Gene Expression Profiles
    Mosquim Junior, Sergio
    de Oliveira, Juliana
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2017, : 168 - 175
  • [25] Mining Gene Expression Data Focusing Cancer Therapeutics: A Digest
    Jauhari, Shaurya
    Rizvi, S. A. M.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (03) : 533 - 547
  • [26] Expression of specific microRNAs in tissue and plasma in colorectal cancer
    Fellizar, Allan
    Refuerzo, Vivencio
    Ramos, John Donnie
    Albano, Pia Marie
    JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2023, 57 (03) : 147 - 157
  • [27] Gene expression information improves reliability of receptor status in breast cancer patients
    Kenn, Michael
    Schlangen, Karin
    Castillo-Tong, Dan Cacsire
    Singer, Christian F.
    Cibena, Michael
    Koelbl, Heinz
    Schreiner, Wolfgang
    ONCOTARGET, 2017, 8 (44) : 77341 - 77359
  • [28] Non-coding RNAs: Identification of Cancer-Associated microRNAs by Gene Profiling
    Ferdin, Jana
    Kunej, Tanja
    Calin, George A.
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2010, 9 (02) : 123 - 138
  • [29] Expression of Estrogen Receptor- and Progesterone Receptor-Regulating MicroRNAs in Breast Cancer
    Kalinina, Tatiana
    Kononchuk, Vladislav
    Alekseenok, Efim
    Obukhova, Darya
    Sidorov, Sergey
    Strunkin, Dmitry
    Gulyaeva, Lyudmila
    GENES, 2021, 12 (04)
  • [30] Gene expression profiling: Decoding breast cancer
    de Snoo, Femke
    Bender, Richard
    Glas, Annuska
    Rutgers, Emiel
    SURGICAL ONCOLOGY-OXFORD, 2009, 18 (04): : 366 - 378