Uncertainty Quantification for the BGK Model of the Boltzmann Equation Using Multilevel Variance Reduced Monte Carlo Methods

被引:7
|
作者
Hu, Jingwei [1 ]
Pareschi, Lorenzo [2 ]
Wang, Yubo [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 30, I-44121 Ferrara, Italy
关键词
kinetic equation; BGK model; multilevel Monte Carlo method; control variate method; uncertainty quantification; random inputs; IMPLICIT-EXPLICIT SCHEMES; CONSERVATION-LAWS; PROPAGATION; SYSTEMS;
D O I
10.1137/20M1331846
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a control variate multilevel Monte Carlo method for the kinetic Bhatnagar-Gross-Krook model of the Boltzmann equation subject to random inputs. The method combines a multilevel Monte Carlo technique with the computation of the optimal control variate multipliers derived from local or global variance minimization problems. Consistency and convergence analysis for the method equipped with a second-order positivity-preserving and asymptotic-preserving scheme in space and time is also performed. Various numerical examples confirm that the optimized multilevel Monte Carlo method outperforms the classical multilevel Monte Carlo method especially for problems with discontinuities.
引用
收藏
页码:650 / 680
页数:31
相关论文
共 50 条
  • [1] FORWARD AND INVERSE UNCERTAINTY QUANTIFICATION USING MULTILEVEL MONTE CARLO ALGORITHMS FOR AN ELLIPTIC NONLOCAL EQUATION
    Jasra, Ajay
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2016, 6 (06) : 501 - 514
  • [2] EMBEDDED MULTILEVEL MONTE CARLO FOR UNCERTAINTY QUANTIFICATION IN RANDOM DOMAINS
    Badia, Santiago
    Hampton, Jerrad
    Principe, Javier
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2021, 11 (01) : 119 - 142
  • [3] Uncertainty Quantification for Porous Media Flow Using Multilevel Monte Carlo
    Mohring, Jan
    Milk, Rene
    Ngo, Adrian
    Klein, Ole
    Iliev, Oleg
    Ohlberger, Mario
    Bastian, Peter
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 145 - 152
  • [4] Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method
    Logashenko, Dmitry
    Litvinenko, Alexander
    Tempone, Raul
    Vasilyeva, Ekaterina
    Wittum, Gabriel
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [5] Multilevel Monte Carlo FDTD Method for Uncertainty Quantification
    Zhu, Xiaojie
    Di Rienzo, Luca
    Ma, Xikui
    Codecasa, Lorenzo
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (10): : 2030 - 2034
  • [6] hp-MULTILEVEL MONTE CARLO METHODS FOR UNCERTAINTY QUANTIFICATION OF COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Beck, Andrea
    Duerrwaechter, Jakob
    Kuhn, Thomas
    Meyer, Fabian
    Munz, Claus-Dieter
    Rohde, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (04) : B1067 - B1091
  • [7] Multilevel Monte Carlo applied for uncertainty quantification in stochastic multiscale systems
    Kimaev, Grigoriy
    Chaffart, Donovan
    Ricardez-Sandoval, Luis A.
    AICHE JOURNAL, 2020, 66 (08)
  • [8] Uncertainty Quantification by Multilevel Monte Carlo and Local Time-Stepping for Wave Propagation
    Grote, Marcus J.
    Michel, Simon
    Nobile, Fabio
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (04) : 1601 - 1628
  • [9] Uncertainty quantification analysis and statistical estimation for LBLOCA in a PWR using Monte-Carlo and alternative methods
    Kang, Dong Gu
    ANNALS OF NUCLEAR ENERGY, 2021, 150
  • [10] On the order reduction of semi-Lagrangian methods for BGK model of Boltzmann equation
    Boscarino, Sebastiano
    Cho, Seung Yeon
    APPLIED MATHEMATICS LETTERS, 2022, 123